DesignsPub Date : 2024-01-16DOI: 10.3390/designs8010009
M. Pham, Ngoc-Hieu Dinh, C. Dang, Hoai-Chinh Truong
{"title":"Numerical Study of Bearing Strength of Infilled Concrete in Large Diameter CFST Column Reinforced by Shear Stoppers","authors":"M. Pham, Ngoc-Hieu Dinh, C. Dang, Hoai-Chinh Truong","doi":"10.3390/designs8010009","DOIUrl":"https://doi.org/10.3390/designs8010009","url":null,"abstract":"Ensuring an adequate bond between the steel tube and infilled concrete interface plays an essential role in achieving composite action for concrete-filled steel tubular (CFST) columns. Thus, this study proposes a new type of large diameter CFST column where the steel tube is reinforced by shear stoppers. The bearing strength of the infilled concrete is the decisive factor in evaluating the overall working efficiency between infilled concrete and steel tube. In this paper, we use nonlinear finite element analysis (NFEA) to investigate the bearing strength of the infilled concrete concerning the ratio of the steel tube’s diameter to its thickness (D/t), the number of shear stoppers N, the height of the shear stopper hb, and the concrete compressive strength (CCS) fc′. Our results show that the influencing factors on the bearing strength of the infilled concrete were arranged in descending order as follows: the number of shear stoppers, the height of shear stopper, the CCS, and the D/t ratio. We also analyze and highlight some significant parameters related to the bearing strength of infilled concrete.","PeriodicalId":504821,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139528545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesignsPub Date : 2024-01-15DOI: 10.3390/designs8010008
Rebecca Richstein, Kai-Uwe Schröder
{"title":"Characterizing the Digital Twin in Structural Mechanics","authors":"Rebecca Richstein, Kai-Uwe Schröder","doi":"10.3390/designs8010008","DOIUrl":"https://doi.org/10.3390/designs8010008","url":null,"abstract":"The Digital Twin is one of the major technology trends of the last decade. During the course of its rapid expansion into various fields of application, many definitions of the Digital Twin emerged, tailored to its respective applications. Taxonomies can cluster the diversity and define application-specific archetypes. This paper presents a systematic characterization of the Digital Twin in the context of structural mechanics and lightweight design. While the importance of a shared understanding and the development of holistic solutions for implementing Digital Twins in various application areas is widely recognized, a general framework for implementing Digital Twins in structural mechanics has not yet been established. In this paper, we systematically characterize Digital Twins and develop a framework for their application in structural mechanics, enabling the digital design and monitoring of structures for improved performance and maintenance strategies. The key contributions include collecting and clustering design and operational requirements and deriving two central archetypes: structure-designing and structure-monitoring Digital Twins. The primary goal is to reduce the complexity of conceptualizing Digital Twins of structures by providing a preliminary framework and reconsidering the Digital Twins of structures as a holistic system throughout the product life cycle. Overall, in this paper, we take a systematic approach to enhancing the conceptualization and implementation of Digital Twins in structural mechanics.","PeriodicalId":504821,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139528999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesignsPub Date : 2024-01-11DOI: 10.3390/designs8010007
Moises Jimenez-Martinez, Julio Varela-Soriano, Rafael Carrera-Espinoza, S. G. Torres-Cedillo, Jacinto Cortés-Pérez
{"title":"Enhancement of Fatigue Life of Polylactic Acid Components through Post-Printing Heat Treatment","authors":"Moises Jimenez-Martinez, Julio Varela-Soriano, Rafael Carrera-Espinoza, S. G. Torres-Cedillo, Jacinto Cortés-Pérez","doi":"10.3390/designs8010007","DOIUrl":"https://doi.org/10.3390/designs8010007","url":null,"abstract":"To reduce the carbon footprint of manufacturing processes, it is necessary to reduce the number of stages in the development process. To this end, integrating additive manufacturing processes with three-dimensional (3D) printing makes it possible to eliminate the need to use tooling for component manufacturing. Furthermore, using 3D printing allows the generation of complex models to optimize different components, reducing the development time and realizing lightweight structures that can be applied in different industries, such as the mobility industry. Printing process parameters have been studied to improve the mechanical properties of printed items. In this regard, although the failure of most structural components occurs under dynamic load, the majority of the evaluations are quasistatic. This work highlights an improvement in fatigue strength under dynamic loads in 3D-printed components through heat treatment. The fatigue resistance was improved regarding the number of cycles and the dispersion of results. This allows 3D-printed polylactic acid components to be structurally used, and increasing their reliability allows their evolution from a prototype to a functional component.","PeriodicalId":504821,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139625415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesignsPub Date : 2024-01-09DOI: 10.3390/designs8010006
Uzair Jamil, Nicholas Vandewetering, Seyyed Ali Sadat, Joshua M. Pearce
{"title":"Wood- and Cable-Based Variable Tilt Stilt-Mounted Solar Photovoltaic Racking System","authors":"Uzair Jamil, Nicholas Vandewetering, Seyyed Ali Sadat, Joshua M. Pearce","doi":"10.3390/designs8010006","DOIUrl":"https://doi.org/10.3390/designs8010006","url":null,"abstract":"The prohibitive costs of small-scale solar photovoltaic (PV) racks decrease PV adoption velocity. To overcome these costs challenges, an open hardware design method is used to develop two novel variable tilt racking designs. These are the first stilt-mounted racking designs that allow for the manual change of the tilt angle from zero to 90 degrees by varying the length of cables. The racks are designed using the calculated dead, wind, and snow loads for Canada as a conservative design for most of the rest of the world. Structural capacities of the wooden members are then ascertained and the resisting bending moment, shear force, tensile force, and compressive force is calculated for them. A structural and truss analysis is performed to ensure that the racking design withstands the applicable forces. Moreover, the implications of changing the tilt angle on the wooden members/cables used to build the system are also determined. The systems offer significant economic savings ranging from one third to two thirds of the capital expenses of the commercially available alternatives. In addition, the racking designs are easy-to-build and require minimal manufacturing operations, which increases their accessibility. The stilt-mounted designs can be employed for agrivoltaic settings while allowing farm workers shaded, ergonomic access to perform planting, weeding, and harvesting.","PeriodicalId":504821,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesignsPub Date : 2023-12-30DOI: 10.3390/designs8010005
R. Petrović, A. Banaszek, Maja Andjelković, Hana R. Qananah, K. Alnagasa
{"title":"Experimental Tests of the Piston Axial Pump with Constant Pressure and Variable Flow","authors":"R. Petrović, A. Banaszek, Maja Andjelković, Hana R. Qananah, K. Alnagasa","doi":"10.3390/designs8010005","DOIUrl":"https://doi.org/10.3390/designs8010005","url":null,"abstract":"Constant pressure variable flow reciprocating axial pumps (CPAP) are used in various applications, where a constant output pressure is maintained when the flow rate changes. When the hydraulic system is at rated pressure or less, the swash plate has maximum tilt, and the pump delivers maximum flow. The swash plate comes into this position thanks to the action of a reactive piston in which there are two springs. However, when the pressure rises above the nominal pressure value, the piston of the hydraulic pressure transducer (HPT) distributes the fluid under pressure to the hydraulic cylinder (HC), which causes a decrease in the tilt angle of the swash plate and a decrease in flow. The CPAP was selected as a component of the hydraulic system of the aircraft for the experimental tests in this paper. The experimental tests covered the structural and working parameters of the pump and analyzed their performance, efficiency and reliability. Experimental tests of structural and operating parameters of the CPAP were carried out in the Laboratory for Hydraulics and Pneumatics “PPT-Namenska” Trstenik on the hydraulic system, which simulated the real conditions prevailing in the hydraulic system of the aircraft. A system was used for data acquisition and recording of pump characteristics, which were obtained during experimental testing. The results of the measurement and testing of the structural parameters of the CPAP are shown in tabular form, and the experimental tests of static characteristics and dynamic behavior are shown diagrammatically.","PeriodicalId":504821,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139138182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesignsPub Date : 2023-12-25DOI: 10.3390/designs8010004
Marco Steck, S. Husung
{"title":"Surrogate-Based Calculation Method for Robust Design Optimization Considering the Fatigue Probability for Variable Service Loads of eBike Drive Units","authors":"Marco Steck, S. Husung","doi":"10.3390/designs8010004","DOIUrl":"https://doi.org/10.3390/designs8010004","url":null,"abstract":"This paper proposes a robust design-optimization approach for eBike drive units that incorporates the highly variable driver-dependent load collectives and system conditions into a fatigue calculation. In an initial step, the relevant influences and loads on the investigated system are examined and reviewed in relation to the current normative requirements. From a methodical viewpoint, this paper presents a surrogate-based simulation-based approach to assess reliability across the entire geometry according to a probabilistic fatigue calculation. The probabilistic evaluation considers the several measured load collectives of different drivers and driving scenarios to enable a robust and type-oriented bike design. In addition to methods of fatigue calculation, this approach also includes common methods of order reduction and reliability-based design optimization. To avoid additional uncertainties in the calculation, this approach considers a complex critical-plane-based multiaxial-fatigue calculation to correctly evaluate the multiaxial and non-proportional stress state across the whole geometry. A data-based surrogate model that supports the fatigue calculation by predicting the load across the given uncertainties is the key to the efficient assessment of the service life of the eBike. Lastly, the identified uncertainties in the design of eBike drive units are investigated and evaluated by this method.","PeriodicalId":504821,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139159042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesignsPub Date : 2023-12-22DOI: 10.3390/designs8010003
A. Mostafa, M. Mourad, Ahmad Mustafa, I. Youssef
{"title":"Investigating the Combined Impact of Water–Diesel Emulsion and Al2O3 Nanoparticles on the of Performance and the Emissions from a Diesel Engine via the Design of Experiment","authors":"A. Mostafa, M. Mourad, Ahmad Mustafa, I. Youssef","doi":"10.3390/designs8010003","DOIUrl":"https://doi.org/10.3390/designs8010003","url":null,"abstract":"This study aims to assess the impact of the water ratio and nanoparticle concentration of neat diesel fuel on the performance characteristics of and exhaust gas emissions from diesel engines. The experimental tests were conducted in two stages. In the first stage, the effects of adding water to neat diesel fuel in ratios of 2.5% and 5% on engine performance and emissions characteristics were examined and compared to those of neat diesel at a constant engine speed of 3000 rpm under three different engine loads. A response surface methodology (RSM) based on a central composite design (CCD) was utilized to simulate the design of the experiment. According to the test results, adding water to neat diesel fuel increased the brake-specific fuel consumption and reduced the brake thermal efficiency compared to neat diesel fuel. In the examination of exhaust emissions, hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) in the tested fuel containing 2.5% of water were decreased in comparison to pure diesel fuel by 16.62%, 21.56%, and 60.18%, respectively, on average, through engine loading. In the second stage, due to the trade-off between emissions and performance, the emulsion fuel containing 2.5% of water is chosen as the best emulsion from the previous stage and mixed with aluminum oxide nanoparticles at two dose levels (50 and 100 ppm). With the same engine conditions, the emulsion fuel mixed with 50 ppm of aluminum oxide nanoparticles exhibited the best performance and the lowest emissions compared to the other evaluated fuels. The outcomes of the investigations showed that a low concentration of 50 ppm with a small amount of 11 nm of aluminum oxide nanoparticles combined with a water diesel emulsion is a successful method for improving diesel engine performance while lowering emissions. Additionally, it was found that the mathematical model could accurately predict engine performance parameters and pollution characteristics.","PeriodicalId":504821,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139165795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesignsPub Date : 2023-11-22DOI: 10.3390/designs7060135
Po-Sen Lin, Olivier Le Roux de Bretagne, M. Grasso, James Brighton, Chris StLeger-Harris, Owen Carless
{"title":"Comparative Analysis of Various Hyperelastic Models and Element Types for Finite Element Analysis","authors":"Po-Sen Lin, Olivier Le Roux de Bretagne, M. Grasso, James Brighton, Chris StLeger-Harris, Owen Carless","doi":"10.3390/designs7060135","DOIUrl":"https://doi.org/10.3390/designs7060135","url":null,"abstract":"This study aims to evaluate the precision of nine distinct hyperelastic models using experimental data sourced from the existing literature. These models rely on parameters obtained through curve-fitting functions. The complexity in finite element models of elastomers arises due to their nonlinear, incompressible behaviour. To achieve accurate representations, it is imperative to employ sophisticated hyperelastic models and appropriate element types and formulations. Prior published work has primarily focused on the comparison between the fitting models and the experimental data. Instead, in this study, the results obtained from finite element analysis are compared against the original data to assess the impact of element formulation, strain range, and mesh type on the ability to accurately predict the response of elastomers over a wide range of strain values. This comparison confirms that the element formulation and strain range can significantly influence result accuracy, yielding different responses in various strain ranges also because of the limitation with the curve fitting tools.","PeriodicalId":504821,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139247666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesignsPub Date : 2023-11-17DOI: 10.3390/designs7060133
V. F. Moritz, Harald Prévost, Janaína S. Crespo, Carlos A. Ferreira, D. Devine
{"title":"Rheological Behaviour of ABS/Metal Composites with Improved Thermal Conductivity for Additive Manufacturing","authors":"V. F. Moritz, Harald Prévost, Janaína S. Crespo, Carlos A. Ferreira, D. Devine","doi":"10.3390/designs7060133","DOIUrl":"https://doi.org/10.3390/designs7060133","url":null,"abstract":"Metal-reinforced polymer composites are suitable materials for applications requiring special thermal, electrical or magnetic properties. Three-dimensional printing technologies enable these materials to be quickly shaped in any design directly and without the need for expensive moulds. However, processing data correlating specific information on how the metal particles influence the rheological behaviour of such composites is lacking, which has a direct effect on the processability of these composites through melt processing additive manufacturing. This study reports the compounding and characterisation of ABS composites filled with aluminium and copper particulates. Experimental results demonstrated that the tensile modulus increased with the incorporation of metal particles; however, there was also an intense embrittling effect. Mechanical testing and rheological analysis indicated poor affinity between the fillers and matrix, and the volume fraction proved to be a crucial factor for complex viscosity, storage modulus and thermal conductivity. However, a promising set of properties was achieved, paving the way for polymer–metal composites with optimised processability, microstructure and properties in melt processing additive manufacturing.","PeriodicalId":504821,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139264643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DesignsPub Date : 2023-11-17DOI: 10.3390/designs7060134
Jung-Sung Park, Bal-Ho Kim
{"title":"Field Experiment for a Prequalification Scheme for a Distribution System Operator on Distributed Energy Resource Aggregations","authors":"Jung-Sung Park, Bal-Ho Kim","doi":"10.3390/designs7060134","DOIUrl":"https://doi.org/10.3390/designs7060134","url":null,"abstract":"The purpose of this paper is to summarize and share the field experiment results of KEPCO’s project consortium to create a TSO-DSO-DERA interaction scheme. The field experiment was conducted based on the prequalification algorithm proposed in previous research from the same consortium, and was designed to verify the validity of the algorithm under realistic grid conditions. In addition, during the course of the field experiment, it was found that points that were missed or not given much importance in the existing prequalification algorithm could affect the completeness of the overall system, and then practical improvements were made to improve this. The demonstration results confirm that the proposed algorithm is effective in real-world grid environments and can help DSOs to ensure the reliability of the distribution system while supporting DERA’s participation in the wholesale market using the proposed prequalification scheme.","PeriodicalId":504821,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139266599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}