R. Petrović, A. Banaszek, Maja Andjelković, Hana R. Qananah, K. Alnagasa
{"title":"恒压变流量活塞轴流泵的实验测试","authors":"R. Petrović, A. Banaszek, Maja Andjelković, Hana R. Qananah, K. Alnagasa","doi":"10.3390/designs8010005","DOIUrl":null,"url":null,"abstract":"Constant pressure variable flow reciprocating axial pumps (CPAP) are used in various applications, where a constant output pressure is maintained when the flow rate changes. When the hydraulic system is at rated pressure or less, the swash plate has maximum tilt, and the pump delivers maximum flow. The swash plate comes into this position thanks to the action of a reactive piston in which there are two springs. However, when the pressure rises above the nominal pressure value, the piston of the hydraulic pressure transducer (HPT) distributes the fluid under pressure to the hydraulic cylinder (HC), which causes a decrease in the tilt angle of the swash plate and a decrease in flow. The CPAP was selected as a component of the hydraulic system of the aircraft for the experimental tests in this paper. The experimental tests covered the structural and working parameters of the pump and analyzed their performance, efficiency and reliability. Experimental tests of structural and operating parameters of the CPAP were carried out in the Laboratory for Hydraulics and Pneumatics “PPT-Namenska” Trstenik on the hydraulic system, which simulated the real conditions prevailing in the hydraulic system of the aircraft. A system was used for data acquisition and recording of pump characteristics, which were obtained during experimental testing. The results of the measurement and testing of the structural parameters of the CPAP are shown in tabular form, and the experimental tests of static characteristics and dynamic behavior are shown diagrammatically.","PeriodicalId":504821,"journal":{"name":"Designs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Tests of the Piston Axial Pump with Constant Pressure and Variable Flow\",\"authors\":\"R. Petrović, A. Banaszek, Maja Andjelković, Hana R. Qananah, K. Alnagasa\",\"doi\":\"10.3390/designs8010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constant pressure variable flow reciprocating axial pumps (CPAP) are used in various applications, where a constant output pressure is maintained when the flow rate changes. When the hydraulic system is at rated pressure or less, the swash plate has maximum tilt, and the pump delivers maximum flow. The swash plate comes into this position thanks to the action of a reactive piston in which there are two springs. However, when the pressure rises above the nominal pressure value, the piston of the hydraulic pressure transducer (HPT) distributes the fluid under pressure to the hydraulic cylinder (HC), which causes a decrease in the tilt angle of the swash plate and a decrease in flow. The CPAP was selected as a component of the hydraulic system of the aircraft for the experimental tests in this paper. The experimental tests covered the structural and working parameters of the pump and analyzed their performance, efficiency and reliability. Experimental tests of structural and operating parameters of the CPAP were carried out in the Laboratory for Hydraulics and Pneumatics “PPT-Namenska” Trstenik on the hydraulic system, which simulated the real conditions prevailing in the hydraulic system of the aircraft. A system was used for data acquisition and recording of pump characteristics, which were obtained during experimental testing. The results of the measurement and testing of the structural parameters of the CPAP are shown in tabular form, and the experimental tests of static characteristics and dynamic behavior are shown diagrammatically.\",\"PeriodicalId\":504821,\"journal\":{\"name\":\"Designs\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/designs8010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/designs8010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Tests of the Piston Axial Pump with Constant Pressure and Variable Flow
Constant pressure variable flow reciprocating axial pumps (CPAP) are used in various applications, where a constant output pressure is maintained when the flow rate changes. When the hydraulic system is at rated pressure or less, the swash plate has maximum tilt, and the pump delivers maximum flow. The swash plate comes into this position thanks to the action of a reactive piston in which there are two springs. However, when the pressure rises above the nominal pressure value, the piston of the hydraulic pressure transducer (HPT) distributes the fluid under pressure to the hydraulic cylinder (HC), which causes a decrease in the tilt angle of the swash plate and a decrease in flow. The CPAP was selected as a component of the hydraulic system of the aircraft for the experimental tests in this paper. The experimental tests covered the structural and working parameters of the pump and analyzed their performance, efficiency and reliability. Experimental tests of structural and operating parameters of the CPAP were carried out in the Laboratory for Hydraulics and Pneumatics “PPT-Namenska” Trstenik on the hydraulic system, which simulated the real conditions prevailing in the hydraulic system of the aircraft. A system was used for data acquisition and recording of pump characteristics, which were obtained during experimental testing. The results of the measurement and testing of the structural parameters of the CPAP are shown in tabular form, and the experimental tests of static characteristics and dynamic behavior are shown diagrammatically.