{"title":"Preparation and Thermoelectric Properties of rGOBi2Te3PEDOT PSS Composite Block","authors":"Fanguo Li","doi":"10.1615/hightempmatproc.2023048017","DOIUrl":"https://doi.org/10.1615/hightempmatproc.2023048017","url":null,"abstract":"","PeriodicalId":50406,"journal":{"name":"High Temperature Material Processes","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135400887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Pogrebnjak, Volodymyr Ivashchenko, Alexei Onoprienko, Petro Scrynskyy, Oleksander Marchuk, Andrii Kovalchenko
{"title":"INFLUENCE OF BIAS VOLTAGE ON THE STRUCTURE AND MECHANICAL PROPERTIES OF Ti-Nb-C FILMS DEPOSITED BY DC DUAL MAGNETRON SPUTTERING","authors":"Alexander Pogrebnjak, Volodymyr Ivashchenko, Alexei Onoprienko, Petro Scrynskyy, Oleksander Marchuk, Andrii Kovalchenko","doi":"10.1615/hightempmatproc.2023048628","DOIUrl":"https://doi.org/10.1615/hightempmatproc.2023048628","url":null,"abstract":"The films of the Ti-Nb-C system were deposited by direct current (DC) magnetron co-sputtering of composite Ti+Nb, and graphite targets onto Si substrates to which negative substrate bias in the range of ‒50÷‒200 V was applied during film deposition. The microstructure, chemical bonds and mechanical properties of films were comparatively investigated. The X-ray diffraction (XRD) analysis revealed that the peaks of the XRD spectra of the film obtained by co-spattering of the composite Ti+Nb and graphite targets are located in intermediate region between the corresponding peaks of the Ti-C and Nb-C films. The X-ray photoelectron spectroscopy (XPS) showed that the Ti-C and Nb-C bonds prevail in the deposited Ti-Nb-C films. It was suggested that the Ti-Nb-C films are nanocomposite and consist of the crystallites of TiC-NbC solid solutions surrounded by amorphous carbon-based matrix. The Knoop hardness of the Ti-Nb-C film is highest (37.5 GPa) in the film deposited at ‒50 V substrate bias. The average friction coefficient determined before film delamination was the lowest (0.12) in that Ti-Nb-C film.","PeriodicalId":50406,"journal":{"name":"High Temperature Material Processes","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135557136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evgeny Grigoryev, Oleg Kuznechik, Alexander Chumakov, Irina Nikonchuk, Evgeny Strizhakov, Stanislav Nescoromniy, Stanislav Ageev
{"title":"HIGH-TEMPERATURE PROCESSES IN POWDER MATERIALS AT HIGH-VOLTAGE ELECTRIC PULSE CONSOLIDATION","authors":"Evgeny Grigoryev, Oleg Kuznechik, Alexander Chumakov, Irina Nikonchuk, Evgeny Strizhakov, Stanislav Nescoromniy, Stanislav Ageev","doi":"10.1615/hightempmatproc.2023046754","DOIUrl":"https://doi.org/10.1615/hightempmatproc.2023046754","url":null,"abstract":"The main features of high-voltage electric pulse consolidation (HVC) of refractory powder materials and the resulting unique capabilities of the method are considered. The electro-thermal processes of HVC at the contacts between powder particles and at the macroscale of the entire consolidated sample are analyzed. The results of experimental studies of the parameters of high-voltage electrical impulse action in the processes of consolidation of high-temperature powder compositions, high-voltage welding of dissimilar materials, as well as high-voltage discharges in liquid are presented. The results of measuring the intensity of thermal radiation of the investigated materials under high-voltage electrical impulse action, recorded by the method of pulse photometry using photodiode sensors, which, together with the Rogowski coil, are components of the measuring complex developed by the authors, are presented.","PeriodicalId":50406,"journal":{"name":"High Temperature Material Processes","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136002582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Zr-ZrN, Zr,Hf -(Zr,Hf)N and Zr,Nb-(Zr,Nb)N coatings deposited on a titanium alloy substrate.","authors":"Alexey Vereschaka, Catherine Sotova, Filipp Milovich, Jury Bublikov, Valery Zhylinski, Kirill Makarevich, Natalia Baranova","doi":"10.1615/hightempmatproc.2023051060","DOIUrl":"https://doi.org/10.1615/hightempmatproc.2023051060","url":null,"abstract":"The properties of Zr-ZrN, Zr,Hf-(Zr,Hf)N and Zr,Nb-(Zr,Nb)N coatings deposited on a Ti6Al-4V titanium alloy substrate were studied. It has been established that the introduction of hafnium increases, and niobium reduces the hardness of the coating. The introduction of hafnium also increases, and niobium reduces, the value of the critical fracture load LC2 in the scratch test. It has been established that a layer of nanocrystallites can form at the interface between the substrate and the coating. This layer is presumably formed by particles of an oxide film destroyed during ion etching, spontaneously formed on the surface of the titanium alloy. All samples with coatings have noticeably lower values of the adhesive component of the friction coefficient fadh compared to the uncoated sample at all temperatures. At room temperature, the Zr-ZrN-coated sample has the best fadh value, but when the temperature rises to 500 °C and above, the Zr,Hf-(Zr,Hf)N-coated sample has an obvious advantage.","PeriodicalId":50406,"journal":{"name":"High Temperature Material Processes","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135562442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nikolai Cherenda, Artem Leivi, Alexandra Petuh, Vladimir V. Uglov, Sergey Grigoriev, Alexey Vereschaka, Valentin Astashinski, Anton Kuzmitski
{"title":"Modification of Ti-6Al-4V titanium alloy surface relief by compression plasma flows impact","authors":"Nikolai Cherenda, Artem Leivi, Alexandra Petuh, Vladimir V. Uglov, Sergey Grigoriev, Alexey Vereschaka, Valentin Astashinski, Anton Kuzmitski","doi":"10.1615/hightempmatproc.2023050354","DOIUrl":"https://doi.org/10.1615/hightempmatproc.2023050354","url":null,"abstract":"Investigation of compression plasma flows impact on surface relief of Ti-6Al-4V titanium alloy was carried out in this work. Profilometry, X-ray diffraction, scanning electron microscopy and samples weight measurements were used as investigation techniques. The findings showed that plasma impact led to the formation of developed surface relief (Ra parameter was changed in the range of 0.7-2.7 µm) due to the action of hydrodynamic instabilities at the melt-plasma border. Increase in the number of pulses resulted in the growth of Ra value. Numerical simulation of surface evolution under plasma impact was carried out on the basis of the model of incompressible fluid potential flow. Simulation data correlated with experimental data set. The hydrodynamic flow of the melt during plasma impact led to another process - surface erosion. Increase in both the absorbed energy density and the number of pulses resulted in erosion intensity increase. Formation of titanium nitride on the surface was observed as a result of the interaction of nitrogen (as a plasma generating gas) with the surface heated under plasma impact. Titanium nitride film prevented the development of the surface relief formed by the action of hydrodynamic instabilities.","PeriodicalId":50406,"journal":{"name":"High Temperature Material Processes","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135954072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deposition of pure boron coatings by magnetron sputtering and investigation of their properties","authors":"Alexey Nikolaev, Alexey Bugaev, Valeria Frolova, Vasily Gushenets, Efim Oks, Alexey Vizir","doi":"10.1615/hightempmatproc.2023050374","DOIUrl":"https://doi.org/10.1615/hightempmatproc.2023050374","url":null,"abstract":"We have deposited pure boron coatings on stainless-steel substrates using a planar magnetron with thermally insulated target of pure crystalline boron in a direct current discharge of up to 50 mA in an argon atmosphere. The magnetron was designed to be used as a component in an electron-ion-plasma test bench for in situ monitoring of boron deposition growth using synchrotron radiation from the VEPP-3 electron storage ring at the Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences. Using this magnetron, we have fabricated boron films with thickness up to 1.5 µm and studied their surface morphology, mechanical properties, and coating composition.","PeriodicalId":50406,"journal":{"name":"High Temperature Material Processes","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135008628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CREATING HEAT EXCHANGE SURFACES USING LASER, ELECTRONIC, AND PLASMA ENERGY FLUXES","authors":"S. Fedorovich, A. Dedov, I. Khaziev","doi":"10.1615/HIGHTEMPMATPROC.2021038265","DOIUrl":"https://doi.org/10.1615/HIGHTEMPMATPROC.2021038265","url":null,"abstract":"","PeriodicalId":50406,"journal":{"name":"High Temperature Material Processes","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80919988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu. Kh. Akhmadeev, Y. Ivanov, O. Krysina, I. Lopatin, E. Petrikova, M. Rygina
{"title":"ELECTRON-ION-PLASMA MODIFICATION OF CARBON STEEL","authors":"Yu. Kh. Akhmadeev, Y. Ivanov, O. Krysina, I. Lopatin, E. Petrikova, M. Rygina","doi":"10.1615/HIGHTEMPMATPROC.2021038031","DOIUrl":"https://doi.org/10.1615/HIGHTEMPMATPROC.2021038031","url":null,"abstract":"","PeriodicalId":50406,"journal":{"name":"High Temperature Material Processes","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86155188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DIFFUSION OF H IN THE PRINCIPAL PHASES OF TiAl ALLOY: A FIRST-PRINCIPLES STUDY","authors":"C. Zhang","doi":"10.1615/HIGHTEMPMATPROC.2021037254","DOIUrl":"https://doi.org/10.1615/HIGHTEMPMATPROC.2021037254","url":null,"abstract":"","PeriodicalId":50406,"journal":{"name":"High Temperature Material Processes","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87764665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Liavonchyk, Hr. Dalholenka, U. Skavysh, V. Sauchyn
{"title":"EFFECT OF ACCOUNTING RADIATION HEAT TRANSFER IN NUMERICAL MODELING OF PARTIAL OXYDATION OF HYDROCARBONS IN A PLASMA REACTOR","authors":"A. Liavonchyk, Hr. Dalholenka, U. Skavysh, V. Sauchyn","doi":"10.1615/HIGHTEMPMATPROC.2021037032","DOIUrl":"https://doi.org/10.1615/HIGHTEMPMATPROC.2021037032","url":null,"abstract":"","PeriodicalId":50406,"journal":{"name":"High Temperature Material Processes","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90337800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}