{"title":"VisRuler: Visual analytics for extracting decision rules from bagged and boosted decision trees","authors":"Angelos Chatzimparmpas, R. M. Martins, A. Kerren","doi":"10.1177/14738716221142005","DOIUrl":"https://doi.org/10.1177/14738716221142005","url":null,"abstract":"Bagging and boosting are two popular ensemble methods in machine learning (ML) that produce many individual decision trees. Due to the inherent ensemble characteristic of these methods, they typically outperform single decision trees or other ML models in predictive performance. However, numerous decision paths are generated for each decision tree, increasing the overall complexity of the model and hindering its use in domains that require trustworthy and explainable decisions, such as finance, social care, and health care. Thus, the interpretability of bagging and boosting algorithms—such as random forest and adaptive boosting—reduces as the number of decisions rises. In this paper, we propose a visual analytics tool that aims to assist users in extracting decisions from such ML models via a thorough visual inspection workflow that includes selecting a set of robust and diverse models (originating from different ensemble learning algorithms), choosing important features according to their global contribution, and deciding which decisions are essential for global explanation (or locally, for specific cases). The outcome is a final decision based on the class agreement of several models and the explored manual decisions exported by users. We evaluated the applicability and effectiveness of VisRuler via a use case, a usage scenario, and a user study. The evaluation revealed that most users managed to successfully use our system to explore decision rules visually, performing the proposed tasks and answering the given questions in a satisfying way.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46943349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evan Ezell, Seung-Hwan Lim, D. Anderson, R. Stewart
{"title":"Community Fabric: Visualizing communities and structure in dynamic networks","authors":"Evan Ezell, Seung-Hwan Lim, D. Anderson, R. Stewart","doi":"10.1177/14738716211056036","DOIUrl":"https://doi.org/10.1177/14738716211056036","url":null,"abstract":"We present Community Fabric, a novel visualization technique for simultaneously visualizing communities and structure within dynamic networks. In dynamic networks, the structure of the network is continuously evolving throughout time and these underlying topological shifts tend to lead to communal changes. Community Fabric helps the viewer more easily interpret and understand the interplay of structural change and community evolution in dynamic graphs. To achieve this, we take a new approach, hybridizing two popular network and community visualizations. Community Fabric combines the likes of the Biofabric static network visualization method with traditional community alluvial flow diagrams to visualize communities in a dynamic network while also displaying the underlying network structure. Our approach improves upon existing state-of-the-art techniques in several key areas. We describe the methodologies of Community Fabric, implement the visualization using modern web-based tools, and apply our approach to three example data sets.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47111992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topology-aware space distortion for structured visualization spaces","authors":"Weihang Wang, Sriram Karthik Badam, N. Elmqvist","doi":"10.1177/14738716211053579","DOIUrl":"https://doi.org/10.1177/14738716211053579","url":null,"abstract":"We propose topology-aware space distortion (TASD), a family of interactive layout techniques for non-linearly distorting geometric space based on user attention and on the structure of the visual representation. TASD seamlessly adapts the visual substrate of any visualization to give more screen real estate to important regions of the representation at the expense of less important regions. In this paper, we present a concrete TASD technique that we call ZoomHalo for interactively distorting a two-dimensional space based on a degree-of-interest (DOI) function defined for the space. Using this DOI function, ZoomHalo derives several areas of interest, computes the available space around each area in relation to other areas and the current viewport extents, and then dynamically expands (or shrinks) each area given user input. We use our prototype to evaluate the technique in two user studies, as well as showcase examples of TASD for node-link diagrams, word clouds, and geographical maps.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45543984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PeaGlyph: Glyph design for investigation of balanced data structures","authors":"Kenan Koc, A. McGough, Sara Johansson Fernstad","doi":"10.1177/14738716211050602","DOIUrl":"https://doi.org/10.1177/14738716211050602","url":null,"abstract":"For many data analysis tasks, such as the formation of well-balanced groups for a fair race or collaboration in learning settings, the balancing between data attributes is at least as important as the actual values of items. At the same time, comparison of values is implicitly desired for these tasks. Even with statistical methods available to measure the level of balance, human judgment, and domain expertise plays an important role in judging the level of balance, and whether the level of unbalance is acceptable or not. Accordingly, there is a need for techniques that improve decision-making in the context of group formation that can be used as a visual complement to statistical analysis. This paper introduces a novel glyph-based visualization, PeaGlyph, which aims to support the understanding of balanced and unbalanced data structures, for instance by using a frequency format through countable marks and salient shape characteristics. The glyph was designed particularly for tasks of relevance for investigation of properties of balanced and unbalanced groups, such as looking-up and comparing values. Glyph-based visualization methods provide flexible and useful abstractions for exploring and analyzing multivariate data sets. The PeaGlyph design was based on an initial study that compared four glyph visualization methods in a joint study, including two base glyphs and their variations. The performance of the novel PeaGlyph was then compared to the best “performers” of the first study through evaluation. The initial results from the study are encouraging, and the proposed design may be a good alternative to the traditional glyphs for depicting multivariate data and allowing viewers to form an intuitive impression as to how balanced or unbalanced a set of objects are. Furthermore, a set of design considerations is discussed in context of the design of the glyphs.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41489071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benoît Colange, L. Vuillon, S. Lespinats, D. Dutykh
{"title":"MING: An interpretative support method for visual exploration of multidimensional data","authors":"Benoît Colange, L. Vuillon, S. Lespinats, D. Dutykh","doi":"10.1177/14738716221079589","DOIUrl":"https://doi.org/10.1177/14738716221079589","url":null,"abstract":"Dimensionality reduction enables analysts to perform visual exploration of multidimensional data with a low-dimensional map retaining as much as possible of the original data structure. The interpretation of such a map relies on the hypothesis of preservation of neighborhood relations. Namely, distances in the map are assumed to reflect faithfully dissimilarities in the data space, as measured with a domain-related metric. Yet, in most cases, this hypothesis is undermined by distortions of those relations by the mapping process, which need to be accounted for during map interpretation. In this paper, we describe an interpretative support method called Map Interpretation using Neighborhood Graphs (MING) displaying individual neighborhood relations on the map, as edges of nearest neighbors graphs. The level of distortion of those relations is shown through coloring of the edges. This allows analysts to assess the reliability of similarity relations inferred from the map, while hinting at the original structure of data by showing the missing relations. Moreover, MING provides a local interpretation for classical map quality indicators, since the quantitative measure of distortions is based on those indicators. Overall, the proposed method alleviates the mapping-induced bias in interpretation while constantly reminding users that the map is not the data.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65676457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved interactive color visualization approach for hyperspectral images","authors":"Haijun Yu, Shengyang Li","doi":"10.1177/14738716211048142","DOIUrl":"https://doi.org/10.1177/14738716211048142","url":null,"abstract":"Hyperspectral images (HSIs) have become increasingly prominent as they can maintain the subtle spectral differences of the imaged objects. Designing approaches and tools for analyzing HSIs presents a unique set of challenges due to their high-dimensional characteristics. An improved color visualization approach is proposed in this article to achieve communication between users and HSIs in the field of remote sensing. Under the real-time interactive control and color visualization, this approach can help users intuitively obtain the rich information hidden in original HSIs. Using the dimensionality reduction (DR) method based on band selection, high-dimensional HSIs are reduced to low-dimensional images. Through drop-down boxes, users can freely specify images that participate in the combination of RGB channels of the output image. Users can then interactively and independently set the fusion coefficient of each image within an interface based on concentric circles. At the same time, the output image will be calculated and visualized in real time, and the information it reflects will also be different. In this approach, channel combination and fusion coefficient setting are two independent processes, which allows users to interact more flexibly according to their needs. Furthermore, this approach is also applicable for interactive visualization of other types of multi-layer data.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45906583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quentin Lobbé, Alexandre Delanoë, David Chavalarias
{"title":"Exploring, browsing and interacting with multi-level and multi-scale dynamics of knowledge","authors":"Quentin Lobbé, Alexandre Delanoë, David Chavalarias","doi":"10.1177/14738716211044829","DOIUrl":"https://doi.org/10.1177/14738716211044829","url":null,"abstract":"The ICT revolution has given birth to a world of digital traces. A wide number of knowledge-driven domains like science are daily fueled by unlimited flows of textual contents. In order to navigate across these growing constellations of words, interdisciplinary innovations are emerging at the crossroad between social and computational sciences. In particular, complex systems approaches make it now possible to reconstruct multi-level and multi-scale dynamics of knowledge by means of inheritance networks of elements of knowledge called phylomemies. In this article, we will introduce an endogenous way to visualize the multi-level and multi-scale properties of phylomemies. The resulting system will enrich a state-of-the-art tree like representation with the possibility to browse through the evolution of a corpus of documents at different level of observation, to interact with various scales of description, to reconstruct a hierarchical clustering of elements of knowledge and to navigate across complex semantic lineages. We will then formalize a generic macro-to-micro methodology of exploration and implement our system as a free software called the Memiescape. Our system will be illustrated by three use cases that will respectively reconstruct the scientific landscape of the top cited publications of the French CNRS, the evolution of the state of the art of knowledge dynamics visualization and the ongoing discovery process of Covid-19 vaccines.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41542024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vanessa Peña-Araya, Tong Xue, Emmanuel Pietriga, L. Amsaleg, A. Bezerianos
{"title":"HyperStorylines: Interactively untangling dynamic hypergraphs","authors":"Vanessa Peña-Araya, Tong Xue, Emmanuel Pietriga, L. Amsaleg, A. Bezerianos","doi":"10.1177/14738716211045007","DOIUrl":"https://doi.org/10.1177/14738716211045007","url":null,"abstract":"We present the design and evaluation of HyperStorylines, a technique that generalizes Storylines to visualize the evolution of relationships involving multiple types of entities such as, for example, people, locations, and companies. Datasets which describe such multi-entity relationships are often modeled as hypergraphs, that can be difficult to visualize, especially when these relationships evolve over time. HyperStorylines builds upon Storylines, enabling the aggregation and nesting of these dynamic, multi-entity relationships. We report on the design process of HyperStorylines, which was informed by discussions and workshops with data journalists; and on the results of a comparative study in which participants had to answer questions inspired by the tasks that journalists typically perform with such data. We observe that although HyperStorylines takes some practice to master, it performs better for identifying and characterizing relationships than the selected baseline visualization (PAOHVis) and was preferred overall.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48739735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal layout of stacked graph for visualizing multidimensional financial time series data","authors":"Yutian He, Hongjun Li","doi":"10.1177/14738716211045005","DOIUrl":"https://doi.org/10.1177/14738716211045005","url":null,"abstract":"In the era of big data, the analysis of multi-dimensional time series data is one of the important topics in many fields such as finance, science, logistics, and engineering. Using stacked graphs for visual analysis helps to visually reveal the changing characteristics of each dimension over time. In order to present visually appealing and easy-to-read stacked graphs, this paper constructs the minimum cumulative variance rule to determine the stacking order of each dimension, as well as adopts the width priority principle and the color complementary principle to determine the label placement positioning and text coloring. In addition, a color matching method is recommended by user study. The proposed optimal visual layout algorithm is applied to the visual analysis of actual multidimensional financial time series data, and as a result, vividly reveals the characteristics of the flow of securities trading funds between sectors.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41836966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhenge Zhao, Danilo Motta, M. Berger, J. Levine, I. B. Kuzucu, R. Fleischman, Afonso Paiva, C. Scheidegger
{"title":"STFT-LDA: An algorithm to facilitate the visual analysis of building seismic responses","authors":"Zhenge Zhao, Danilo Motta, M. Berger, J. Levine, I. B. Kuzucu, R. Fleischman, Afonso Paiva, C. Scheidegger","doi":"10.1177/14738716211038618","DOIUrl":"https://doi.org/10.1177/14738716211038618","url":null,"abstract":"Civil engineers use numerical simulations of a building’s responses to seismic forces to understand the nature of building failures, the limitations of building codes, and how to determine the latter to prevent the former. Such simulations generate large ensembles of multivariate, multiattribute time series. Comprehensive understanding of this data requires techniques that support the multivariate nature of the time series and can compare behaviors that are both periodic and non-periodic across multiple time scales and multiple time series themselves. In this paper, we present a novel technique to extract such patterns from time series generated from simulations of seismic responses. The core of our approach is the use of topic modeling, where topics correspond to interpretable and discriminative features of the earthquakes. We transform the raw time series data into a time series of topics, and use this visual summary to compare temporal patterns in earthquakes, query earthquakes via the topics across arbitrary time scales, and enable details on demand by linking the topic visualization with the original earthquake data. We show, through a surrogate task and an expert study, that this technique allows analysts to more easily identify recurring patterns in such time series. By integrating this technique in a prototype system, we show how it enables novel forms of visual interaction.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2021-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45631431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}