Catarina Maçãs, João R Campos, Nuno Lourenço, Penousal Machado
{"title":"Visualisation of Random Forest classification","authors":"Catarina Maçãs, João R Campos, Nuno Lourenço, Penousal Machado","doi":"10.1177/14738716241260745","DOIUrl":"https://doi.org/10.1177/14738716241260745","url":null,"abstract":"Decision Trees (DTs) stand out as a prevalent choice among supervised Machine Learning algorithms. These algorithms form binary structures, effectively dividing data into smaller segments based on distinct rules. Consequently, DTs serve as a learning mechanism to identify optimal rules for the separation and classification of all elements within a dataset. Due to their resemblance to rule-based decisions, DTs are easy to interpret. Additionally, their minimal need for data pre-processing and versatility in handling various data types make DTs highly practical and user-friendly across diverse domains. Nevertheless, when confronted with extensive datasets or ensembles involving multiple trees, such as Random Forests, its analysis can become challenging. To facilitate the examination and validation of these models, we have developed a visual tool that incorporates a range of visualisations providing both an overview and detailed insights into a set of DTs. Our tool is designed to offer diverse perspectives on the same data, enabling a deeper understanding of the decision-making process. This article outlines our design approach, introduces various visualisation models, and details the iterative validation process. We validate our methodology through a telecommunications use case, specifically employing the visual tool to decipher how a DT-based model determines the optimal communication channel (i.e. phone call, email, SMS) for a telecommunication operator to use when contacting a client.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Visualizing congestion at large-scale events with an interactive-view system incorporating proximity-based networks","authors":"Sayaka Morikoshi, Masaki Onishi, Takayuki Itoh","doi":"10.1177/14738716241256380","DOIUrl":"https://doi.org/10.1177/14738716241256380","url":null,"abstract":"Contact with infected individuals can lead to the spread of infectious diseases. During the COVID-19 pandemic, people were strongly urged to avoid the three Cs: closed spaces, crowded places, and close-contact settings. To hold large-scale events under such circumstances, reducing crowd congestion is key to preventing the further spread of infection. Therefore, identifying the pedestrian behaviors and walking patterns that pose a high risk of infection and utilizing them for effective crowd control is necessary. In this study, we propose an approach for visualizing walking paths while maintaining visibility from large-scale human flow data and representing both spatial and temporal features. The proposed method enables the visualization of the pedestrian proximity status as a network containing three components: a proximity network, proximity path, and pedestrian statistics that interact with each other. By operating the three components of this system interactively, we can observe the spatial and temporal features of situations with a high risk of infection during crowd congestion. An example of the operation of this system is presented by visualizing real-world human flow data measured at an event venue and identifying the proximity of the pedestrians.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141349712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Merel de Leeuw den Bouter, Javier Lloret Pardo, Zeno Geradts, Marcel Worring
{"title":"ProtoExplorer: Interpretable forensic analysis of deepfake videos using prototype exploration and refinement","authors":"Merel de Leeuw den Bouter, Javier Lloret Pardo, Zeno Geradts, Marcel Worring","doi":"10.1177/14738716241238476","DOIUrl":"https://doi.org/10.1177/14738716241238476","url":null,"abstract":"In high-stakes settings, Machine Learning models that can provide predictions that are interpretable for humans are crucial. This is even more true with the advent of complex deep learning based models with a huge number of tunable parameters. Recently, prototype-based methods have emerged as a promising approach to make deep learning interpretable. We particularly focus on the analysis of deepfake videos in a forensics context. Although prototype-based methods have been introduced for the detection of deepfake videos, their use in real-world scenarios still presents major challenges, in that prototypes tend to be overly similar and interpretability varies between prototypes. This paper proposes a Visual Analytics process model for prototype learning, and, based on this, presents ProtoExplorer, a Visual Analytics system for the exploration and refinement of prototype-based deepfake detection models. ProtoExplorer offers tools for visualizing and temporally filtering prototype-based predictions when working with video data. It disentangles the complexity of working with spatio-temporal prototypes, facilitating their visualization. It further enables the refinement of models by interactively deleting and replacing prototypes with the aim to achieve more interpretable and less biased predictions while preserving detection accuracy. The system was designed with forensic experts and evaluated in a number of rounds based on both open-ended think aloud evaluation and interviews. These sessions have confirmed the strength of our prototype-based exploration of deepfake videos while they provided the feedback needed to continuously improve the system.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raissa dos Santos Vieira, Hugo Alexandre Dantas do Nascimento, Joelma de Moura Ferreira, Les Foulds
{"title":"Enhancing graph drawings through edge bundling using clustering ensembles","authors":"Raissa dos Santos Vieira, Hugo Alexandre Dantas do Nascimento, Joelma de Moura Ferreira, Les Foulds","doi":"10.1177/14738716241239619","DOIUrl":"https://doi.org/10.1177/14738716241239619","url":null,"abstract":"Edge bundling is a technique used to improve the readability of large graph drawings by grouping edges to reduce visual complexity. This paper treats this task as a clustering problem, using compatibility metrics to evaluate solutions in an optimization pipeline combined with a clustering ensemble approach. The aim is to present the Clustering Ensemble-based Edge Bundling (CEBEB) method for solving the General-based Edge Bundling (GBEB) problem and report results for some given graphs. The CEBEB method proved very promising and generated better solutions than an existing evolutionary algorithm. Additionally, the paper introduces a new ensemble algorithm, specific for the GBEB, and reviews some previous results.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luoxuan Weng, Shi Liu, Hang Zhu, Jiashun Sun, Wong Kam-Kwai, Dongming Han, Minfeng Zhu, Wei Chen
{"title":"Towards an understanding and explanation for mixed-initiative artificial scientific text detection","authors":"Luoxuan Weng, Shi Liu, Hang Zhu, Jiashun Sun, Wong Kam-Kwai, Dongming Han, Minfeng Zhu, Wei Chen","doi":"10.1177/14738716241240156","DOIUrl":"https://doi.org/10.1177/14738716241240156","url":null,"abstract":"Large language models (LLMs) have gained popularity in various fields for their exceptional capability of generating human-like text. Their potential misuse has raised social concerns about plagiarism in academic contexts. However, effective artificial scientific text detection is a non-trivial task due to several challenges, including (1) the lack of a clear understanding of the differences between machine-generated and human-written scientific text, (2) the poor generalization performance of existing methods caused by out-of-distribution issues, and (3) the limited support for human-machine collaboration with sufficient interpretability during the detection process. In this paper, we first identify the critical distinctions between machine-generated and human-written scientific text through a quantitative experiment. Then, we propose a mixed-initiative workflow that combines human experts’ prior knowledge with machine intelligence, along with a visual analytics system to facilitate efficient and trustworthy scientific text detection. Finally, we demonstrate the effectiveness of our approach through two case studies and a controlled user study. We also provide design implications for interactive artificial text detection tools in high-stakes decision-making scenarios.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Strang, David Sewell, Alexander Kim, Kevin Alcedo, David Rosenbluth
{"title":"Principal trade-off analysis","authors":"Alexander Strang, David Sewell, Alexander Kim, Kevin Alcedo, David Rosenbluth","doi":"10.1177/14738716241239018","DOIUrl":"https://doi.org/10.1177/14738716241239018","url":null,"abstract":"How are the advantage relations between a set of agents playing a game organized and how do they reflect the structure of the game? In this paper, we illustrate ‘Principal Trade-off Analysis’ (PTA), a decomposition method that embeds games into a low-dimensional feature space. We argue that the embeddings are more revealing than previously demonstrated by developing an analogy to Principal Component Analysis (PCA). PTA represents an arbitrary two-player zero-sum game as linear combination of simple games via the projection of policy profiles into orthogonal 2D feature planes. We show that the feature planes represent unique strategic trade-offs and truncation of the sequence provides insightful model reduction and visualization. We demonstrate the validity of PTA on a quartet of games (Kuhn poker, RPS + 2, Blotto and Pokemon). In Kuhn poker, PTA clearly identifies the trade-off between bluffing and calling. In Blotto, PTA identifies game symmetries and specifies strategic trade-offs associated with distinct win conditions. These symmetries reveal limitations of PTA unaddressed in previous work. For Pokemon, PTA recovers clusters that naturally correspond to Pokemon types, correctly identifies the designed trade-off between those types, and discovers a rock-paper-scissor (RPS) cycle in the Pokemon generation type – all absent any specific information except game outcomes.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Skeppstedt, Magnus Ahltorp, Kostiantyn Kucher, Matts Lindström
{"title":"From word clouds to Word Rain: Revisiting the classic word cloud to visualize climate change texts","authors":"Maria Skeppstedt, Magnus Ahltorp, Kostiantyn Kucher, Matts Lindström","doi":"10.1177/14738716241236188","DOIUrl":"https://doi.org/10.1177/14738716241236188","url":null,"abstract":"Word Rain is a development of the classic word cloud. It addresses some of the limitations of word clouds, in particular the lack of a semantically motivated positioning of the words, and the use of font size as a sole indicator of word prominence. Word Rain uses the semantic information encoded in a distributional semantics-based language model – reduced into one dimension – to position the words along the x-axis. Thereby, the horizontal positioning of the words reflects semantic similarity. Font size is still used to signal word prominence, but this signal is supplemented with a bar chart, as well as with the position of the words on the y-axis. We exemplify the use of Word Rain by three concrete visualization tasks, applied on different real-world texts and document collections on climate change. In these case studies, word2vec models, reduced to one dimension with t-SNE, are used to encode semantic similarity, and TF-IDF is used for measuring word prominence. We evaluate the technique further by carrying out domain expert reviews.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyoji Ha, Kwang-jin Moon, Hye-Gyoung Joung, Hyegyeong Kim, Kyungwon Lee
{"title":"An exploration system to effectively analyze the visual metaphor used in sentiment visualization","authors":"Hyoji Ha, Kwang-jin Moon, Hye-Gyoung Joung, Hyegyeong Kim, Kyungwon Lee","doi":"10.1177/14738716241228593","DOIUrl":"https://doi.org/10.1177/14738716241228593","url":null,"abstract":"In the field of data visualization, there has been a recent trend of using a complex type of visualization with a multidimensional structure or using several visualizations in parallel when summarizing the results of sentiment analysis. Although this trend may be useful for sophisticated sentiment analysis, such analysis is difficult for the general public and novice researchers. To address this issue, there has recently been a trend of visualizing sentiments using visual metaphors. To facilitate the understanding of related cases, it is necessary to have a systematic means of grasping the sentiment target, the purpose and motivation of research, and the representations used as substitutes for visual metaphors. Therefore, the objective of the present study was to develop an exploration system that can analyze the visual metaphors used in the case of sentiment visualization. For this study, (1) sentiment visualization cases in which visual metaphors are used were collected. (2) After a taxonomy composed of the categories of “target, intermediation, representation, visual variable, and visualization technique” was constructed, it was used to analyze sentences of visual metaphors appearing in sentiment visualization cases. (3) An exploration system capable of grasping the semantic relationships of sub-elements within the five categories of the taxonomy and intuitively interpreting visual metaphors was developed so that appropriate cases can be recommended to sentiment visualization researchers. (4) The approach and usefulness of the exploration system were explained using user scenarios. (5) A case study was conducted to show that the provided system can be analyzed from various perspectives. (6) The usability of the exploration system was demonstrated through a verification targeting experts. The proposed system allows researchers and analysts to intuitively grasp “what types of visual metaphor method and idea should be equipped to visualize sentiment data in an easier way to understand.”","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139833949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyoji Ha, Kwang-jin Moon, Hye-Gyoung Joung, Hyegyeong Kim, Kyungwon Lee
{"title":"An exploration system to effectively analyze the visual metaphor used in sentiment visualization","authors":"Hyoji Ha, Kwang-jin Moon, Hye-Gyoung Joung, Hyegyeong Kim, Kyungwon Lee","doi":"10.1177/14738716241228593","DOIUrl":"https://doi.org/10.1177/14738716241228593","url":null,"abstract":"In the field of data visualization, there has been a recent trend of using a complex type of visualization with a multidimensional structure or using several visualizations in parallel when summarizing the results of sentiment analysis. Although this trend may be useful for sophisticated sentiment analysis, such analysis is difficult for the general public and novice researchers. To address this issue, there has recently been a trend of visualizing sentiments using visual metaphors. To facilitate the understanding of related cases, it is necessary to have a systematic means of grasping the sentiment target, the purpose and motivation of research, and the representations used as substitutes for visual metaphors. Therefore, the objective of the present study was to develop an exploration system that can analyze the visual metaphors used in the case of sentiment visualization. For this study, (1) sentiment visualization cases in which visual metaphors are used were collected. (2) After a taxonomy composed of the categories of “target, intermediation, representation, visual variable, and visualization technique” was constructed, it was used to analyze sentences of visual metaphors appearing in sentiment visualization cases. (3) An exploration system capable of grasping the semantic relationships of sub-elements within the five categories of the taxonomy and intuitively interpreting visual metaphors was developed so that appropriate cases can be recommended to sentiment visualization researchers. (4) The approach and usefulness of the exploration system were explained using user scenarios. (5) A case study was conducted to show that the provided system can be analyzed from various perspectives. (6) The usability of the exploration system was demonstrated through a verification targeting experts. The proposed system allows researchers and analysts to intuitively grasp “what types of visual metaphor method and idea should be equipped to visualize sentiment data in an easier way to understand.”","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139774341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An empirical study of counterfactual visualization to support visual causal inference","authors":"Arran Zeyu Wang, David Borland, David Gotz","doi":"10.1177/14738716241229437","DOIUrl":"https://doi.org/10.1177/14738716241229437","url":null,"abstract":"Counterfactuals – expressing what might have been true under different circumstances – have been widely applied in statistics and machine learning to help understand causal relationships. More recently, counterfactuals have begun to emerge as a technique being applied within visualization research. However, it remains unclear to what extent counterfactuals can aid with visual data communication. In this paper, we primarily focus on assessing the quality of users’ understanding of data when provided with counterfactual visualizations. We propose a preliminary model of causality comprehension by connecting theories from causal inference and visual data communication. Leveraging this model, we conducted an empirical study to explore how counterfactuals can improve users’ understanding of data in static visualizations. Our results indicate that visualizing counterfactuals had a positive impact on participants’ interpretations of causal relations within datasets. These results motivate a discussion of how to more effectively incorporate counterfactuals into data visualizations.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}