Intelligent Automation and Soft Computing最新文献

筛选
英文 中文
An Improved Genetic Algorithm for Automated Convolutional Neural Network Design 一种用于自动卷积神经网络设计的改进遗传算法
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.020975
Rahul Dubey, Jitendra Agrawal
{"title":"An Improved Genetic Algorithm for Automated Convolutional Neural Network Design","authors":"Rahul Dubey, Jitendra Agrawal","doi":"10.32604/iasc.2022.020975","DOIUrl":"https://doi.org/10.32604/iasc.2022.020975","url":null,"abstract":"Extracting the features from an image is a cumbersome task. Initially, this task was performed by domain experts through a process known as handcrafted feature design. A deep embedding technique known as convolutional neural networks (CNNs) later solved this problem by introducing the feature learning concept, through which the CNN is directly provided with images. This CNN then learns the features of the image, which are subsequently given as input to the further layers for an intended task like classification. CNNs have demonstrated astonishing performance in several practicable applications in the last few years. Nevertheless, the pursuance of CNNs primarily depends upon their architecture, which is handcrafted by domain expertise and type of investigated problem. On the other hand, for researchers who do not have proficiency in using CNNs, it has been very difficult to explore this topic in their problem statements. In this paper, we have come up with a rank and gradient descent-based optimized genetic algorithm to automatically find the architecture design of CNNs that is vigorously competent in exploring the best CNN architecture for maneuvering the tasks of image classification. In the proposed algorithm, there is no requirement for handcrafted preand post-processing, which implies that the algorithm is fully mechanized. The validation of the proposed algorithm on conventional benchmarked datasets has been done by comparing the run time of a graphics processing unit (GPU) throughout the training process and assessing the accuracy of various measures. The experimental results show that the proposed algorithm accomplishes better and more persistent ‘classification accuracy’ than the original genetic algorithm on the CIFAR datasets by using fifty percent less intensive computing resources for training the individual CNN and the entire population.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"72 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86319049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Coronavirus Decision-Making Based on a Locally -Generalized Closed Set 基于局部广义闭集的冠状病毒决策
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.021581
M. A. El Safty, S. A. Alblowi, Y. Almalki, M. E. El Sayed
{"title":"Coronavirus Decision-Making Based on a Locally -Generalized Closed Set","authors":"M. A. El Safty, S. A. Alblowi, Y. Almalki, M. E. El Sayed","doi":"10.32604/iasc.2022.021581","DOIUrl":"https://doi.org/10.32604/iasc.2022.021581","url":null,"abstract":"Real-world applications now deal with a massive amount of data, and information about the world is inaccurate, incomplete, or uncertain. Therefore, we present in our paper a proposed model for solving problems. This model is based on the class of locally generalized closed sets, namely, locally simply* alpha generalized closed* sets and locally simply* alpha generalized closed** sets (briefly, L S-M*alpha GC*-sets and L S-M*alpha GC**-sets), based on simply* alpha open set. We also introduce various concepts of their properties and their relationship with other types, and we are studying several of their properties. Finally, we apply the concept of the simply* alpha open set to illustrate the importance of our method in decision-making for information systems about the infections of Coronavirus in humans. In fact, we were able to decide the impact factors of Coronavirus infection. The results were also programmed using the MATLAB program. Therefore, it is recommended that our proposed concept be used in future decision-making.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"26 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86644410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Path Planning for Intelligent UAVs Using Graph Convolution Networks 基于图卷积网络的智能无人机最优路径规划
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.020974
A. Jothi, P. L. K. Priyadarsini
{"title":"Optimal Path Planning for Intelligent UAVs Using Graph Convolution Networks","authors":"A. Jothi, P. L. K. Priyadarsini","doi":"10.32604/iasc.2022.020974","DOIUrl":"https://doi.org/10.32604/iasc.2022.020974","url":null,"abstract":"Unmanned Aerial Vehicles (UAVs) are in use for surveillance services in the geographic areas, that are very hard and sometimes not reachable by humans. Nowadays, UAVs are being used as substitutions to manned operations in various applications. The intensive utilization of autonomous UAVs has given rise to many new challenges. One of the vital problems that arise while deploying UAVs in surveillance applications is the Coverage Path Planning(CPP) problem. Given a geographic area, the problem is to find an optimal path/tour for the UAV such that it covers the entire area of interest with minimal tour length. A graph can be constructed from the map of the area under surveillance, using computational geometric techniques. In this work, the Coverage Path Planning problem is posed as a Travelling Salesperson Problem(TSP) on these graphs. The graphs obtained are large in number of vertices and edges and the real-time applications require good computation speed. Hence a model is built using Graph Convolution Network (GCN). The model is effectively trained with different problem instances such as TSP20, TSP50, and TSP100. Results obtained from the Concorde Benchmark Dataset were used to analyze the optimality of the predicted tour length by the GCN. The model is also evaluated against the performance of evolutionary algorithms on several self-constructed graphs. Particle Swarm Optimization, Ant Colony Optimization, and Firefly Algorithm are used to find optimal tours and are compared with GCN. It is found that the proposed GCN framework outperforms these evolutionary algorithms in optimal tour length and also the computation time.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"25 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88797084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Optimized Control of Single Phase Reboost Luo Converter Fed Grid-Connected PV System 单相再升压罗变流器馈网光伏系统的优化控制
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.023093
S. Baskaran, Raghuraman Sivalingam
{"title":"Optimized Control of Single Phase Reboost Luo Converter Fed Grid-Connected PV System","authors":"S. Baskaran, Raghuraman Sivalingam","doi":"10.32604/iasc.2022.023093","DOIUrl":"https://doi.org/10.32604/iasc.2022.023093","url":null,"abstract":"","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"43 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88979317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
User Interaction Based Recommender System Using Machine Learning 基于用户交互的机器学习推荐系统
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.018985
R. Sabitha, S. Vaishnavi, S. Karthik, R. M. Bhavadharini
{"title":"User Interaction Based Recommender System Using Machine Learning","authors":"R. Sabitha, S. Vaishnavi, S. Karthik, R. M. Bhavadharini","doi":"10.32604/iasc.2022.018985","DOIUrl":"https://doi.org/10.32604/iasc.2022.018985","url":null,"abstract":"In the present scenario of electronic commerce (E-Commerce), the indepth knowledge of user interaction with resources has become a significant research concern that impacts more on analytical evaluations of recommender systems. For staying in aggressive E-Commerce, various products and services regarding distinctive requirements must be provided on time. Moreover, because of the large amount of product information available online, Recommender Systems (RS) are required to analyze the availability of consumers, which improves the decision-making of customers with detailed product knowledge and reduces time consumption. With that note, this paper derives a new model called User Interaction based Recommender System (UI-RS) that utilizes the data from multiple sources and opinion-based analysis for sensing the consumer needs and interests. For that, Content-Based Filtering (CBF) analyses various products and determines the likeliness of products based on User Interaction to recommend that to consumers. Then, the product information from multiple sources is combined with DempsterShafer (D-S) evidence theory, and then, decision making for product recommendation is performed with CBF. Moreover, the modified Radial Basis Function Neural Networks (RBFNN) technique has been incorporated for measuring product recommendations. The results show that the proposed model produces better results in providing accurate recommendations to Consumers with a higher rate of coverage and precision, thereby enhancing significant growth in E-Commerce.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"11 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89133178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Requirement Design for Software Configuration and System Modeling 软件配置与系统建模需求设计
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.016116
W. Mehmood, A. Waheed Khan, W. Aslam, Shafiq Ahmad, Ahmed M. El-Sherbeeny, M. Shafiq
{"title":"Requirement Design for Software Configuration and System Modeling","authors":"W. Mehmood, A. Waheed Khan, W. Aslam, Shafiq Ahmad, Ahmed M. El-Sherbeeny, M. Shafiq","doi":"10.32604/iasc.2022.016116","DOIUrl":"https://doi.org/10.32604/iasc.2022.016116","url":null,"abstract":"Software Configuration Management (SCM) aims to control the development of complex software systems. Traditional SCM systems treat text files as central artifacts, so they are mainly developed for source code. Such a system is not suitable for model-based software development with model-centric artifacts. When applying traditional systems to model-based software development, new challenges such as model mapping, differentiation, and merging arise. Many existing methods mainly use UML or domain-specific languages to determine model differences. However, as far as we know, there is no such technology for System Modeling Language (SysML) models. SysML covers the entire development life cycle of various complex systems, covering information, processes, hardware and software. SysML contains nine types of diagrams for system modeling. One of them is the SysML requirement diagram, which is used to capture the functional requirements of the system. We propose a differentiation method for the SysML demand model. We recommend to create a SysML requirement model in the CASE tool first, and then export the SysML model in the form of XMI. Then, we parse the XMI representation through difference calculations. Finally, we summarize the results in annotated form. We implemented our method in a satellite system case study and demonstrated the experimental use of the method.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"33 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89442040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Machine-Learning Framework to Improve Wi-Fi Based Indoorpositioning 改进基于Wi-Fi的室内定位的机器学习框架
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.023105
Venkateswari Pichaimani, K. R. Manjula
{"title":"A Machine-Learning Framework to Improve Wi-Fi Based Indoorpositioning","authors":"Venkateswari Pichaimani, K. R. Manjula","doi":"10.32604/iasc.2022.023105","DOIUrl":"https://doi.org/10.32604/iasc.2022.023105","url":null,"abstract":"The indoor positioning system comprises portable wireless devices that aid in finding the location of people or objects within the buildings. Identification of the items is through the capacity level of the signal received from various access points (i.e., Wi-Fi routers). The positioning of the devices utilizing some algorithms has drawn more attention from the researchers. Yet, the designed algorithm still has problems for accurate floor planning. So, the accuracy of position estimation with minimum error is made possible by introducing Gaussian Distributive Feature Embedding based Deep Recurrent Perceptive Neural Learning (GDFE-DRPNL), a novel framework. Novel features from the dataset are through two processing stages dimensionality reduction and position estimation. Initially, the essential elements selection using the Gaussian Distributive Feature Embedding technique is the novel framework. The feature reduction process aims to reduce the time consumption and overhead for estimating the location of various devices. In the next stage, employ Deep Recurrent multilayer Perceptive Neural Learning to evaluate the device position with dimensionality reduced features. The proposed Deep-learning approach accurately learns the quality and the signal strength data with multiple layers by applying Deming Regressive Trilateral Positioning Model. As a result, the GDFE-DRPNL framework increases the positioning accuracy and minimizes the error rate. The experimental assessments with various factors such as positioning accuracy minimized by 70% and 60%, computation time minimized by 45% and 55% as well as overhead by 11% and 23% compared with PFRL and two-dimensional localization algorithm. Through the experiment and after analyzing the data, verify that the proposed GDFEDRPNL algorithm in this paper is better than the previous methods.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"84 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89592789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Big Data Analytics with OENN Based Clinical Decision Support System 基于OENN临床决策支持系统的大数据分析
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.020203
T. Murari, L. Prathiba, Kranthi Kumar Singamaneni, D. Venu, Vinay Kumar Nassa, R. Kohar, Satyajit Sidheshwar Uparkar
{"title":"Big Data Analytics with OENN Based Clinical Decision Support System","authors":"T. Murari, L. Prathiba, Kranthi Kumar Singamaneni, D. Venu, Vinay Kumar Nassa, R. Kohar, Satyajit Sidheshwar Uparkar","doi":"10.32604/iasc.2022.020203","DOIUrl":"https://doi.org/10.32604/iasc.2022.020203","url":null,"abstract":"In recent times, big data analytics using Machine Learning (ML) possesses several merits for assimilation and validation of massive quantity of complicated healthcare data. ML models are found to be scalable and flexible over conventional statistical tools, which makes them suitable for risk stratification, diagnosis, classification and survival prediction. In spite of these benefits, the utilization of ML in healthcare sector faces challenges which necessitate massive training data, data preprocessing, model training and parameter optimization based on the clinical problem. To resolve these issues, this paper presents new Big Data Analytics with Optimal Elman Neural network (BDA-OENN) for clinical decision support system. The focus of the BDA-OENN model is to design a diagnostic tool for Autism Spectral Disorder (ASD), which is a neurological illness related to communication, social skills and repetitive behaviors. The presented BDA-OENN model involves different stages of operations such as data preprocessing, synthetic data generation, classification and parameter optimization. For the generation of synthetic data, Synthetic Minority Over-sampling Technique (SMOTE) is used. Hadoop Ecosystem tool is employed to manage big data. Besides, the OENN model is used for classification process in which the optimal parameter setting of the ENN model by using Binary Grey Wolf Optimization (BGWO) algorithm. A detailed set of simulations were performed to highlight the improved performance of the BDA-OENN model. The resultant experimental values report the betterment of the BDA-OENN model over the other methods in terms of distinct performance measures. Ligent healthcare systems assists to make better decision, which further enables the patient to provide improved medical services. At the same time, skin lesion is a deadly disease that affects people of all age groups. Early, skin lesion segmentation and classification play a vital role in the precise diagnosis of skin cancer by intelligent system. But the automated diagnosis of skin lesions in dermoscopic images is a challenging process because of the problems such as artifacts (hair, gel bubble, ruler marker), This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Intelligent Automation & Soft Computing DOI:10.32604/iasc.2022.020203 Article ech T Press Science","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"30 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83024744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IIoT Framework Based ML Model to Improve Automobile Industry Product 基于工业物联网框架的ML模型改进汽车工业产品
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.020660
S. Gopalakrishnan, M. Senthil Kumaran
{"title":"IIoT Framework Based ML Model to Improve Automobile Industry Product","authors":"S. Gopalakrishnan, M. Senthil Kumaran","doi":"10.32604/iasc.2022.020660","DOIUrl":"https://doi.org/10.32604/iasc.2022.020660","url":null,"abstract":"In the automotive industry, multiple predictive maintenance units run behind the scenes in every production process to support significant product development, particularly among Accessories Manufacturers (AMs). As a result, they wish to maintain a positive relationship with vehicle manufacturers by providing 100 percent quality assurances for accessories. This is only achievable if they implement an effective anticipatory strategy that prioritizes quality control before and after product development. To do this, many sensors devices are interconnected in the production area to collect operational data (humanity, viscosity, and force) continuously received from machines and sent to backend computers for control operations and predictive analysis. As a result, there is a vast volume of data that may be processed further to obtain accurate information on equipment processing speed and production efficiency. However, extracting details in the essential format for data-driven decision support for predictive maintenance is problematic. As a result, an effective predictive maintenance approach based on Machine Learning (ML) methods is established. It has an impact on the Hybrid Machine Learning (HML) model, which blends supervised and unsupervised learning. It helps to forecast breakdowns and production line deviations ahead of time, preventing the manufacturing unit from shutting down. The proposed predictive methodology has been tested in terms of earlier anomaly detection, production line accuracy & machinery efficiency and compared with other existing ML based predictive maintenance approaches.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"60 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83379200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Improved Homomorphic Encryption with Optimal Key Generation Technique for VANETs 基于最优密钥生成技术的改进vanet同态加密
IF 2 4区 计算机科学
Intelligent Automation and Soft Computing Pub Date : 2022-01-01 DOI: 10.32604/iasc.2022.024687
G. Tamilarasi, K. Rajiv Gandhi, V. Palanisamy
{"title":"Improved Homomorphic Encryption with Optimal Key Generation Technique for VANETs","authors":"G. Tamilarasi, K. Rajiv Gandhi, V. Palanisamy","doi":"10.32604/iasc.2022.024687","DOIUrl":"https://doi.org/10.32604/iasc.2022.024687","url":null,"abstract":"","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"62 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90998692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信