Optimal Path Planning for Intelligent UAVs Using Graph Convolution Networks

IF 2 4区 计算机科学 Q2 Computer Science
A. Jothi, P. L. K. Priyadarsini
{"title":"Optimal Path Planning for Intelligent UAVs Using Graph Convolution Networks","authors":"A. Jothi, P. L. K. Priyadarsini","doi":"10.32604/iasc.2022.020974","DOIUrl":null,"url":null,"abstract":"Unmanned Aerial Vehicles (UAVs) are in use for surveillance services in the geographic areas, that are very hard and sometimes not reachable by humans. Nowadays, UAVs are being used as substitutions to manned operations in various applications. The intensive utilization of autonomous UAVs has given rise to many new challenges. One of the vital problems that arise while deploying UAVs in surveillance applications is the Coverage Path Planning(CPP) problem. Given a geographic area, the problem is to find an optimal path/tour for the UAV such that it covers the entire area of interest with minimal tour length. A graph can be constructed from the map of the area under surveillance, using computational geometric techniques. In this work, the Coverage Path Planning problem is posed as a Travelling Salesperson Problem(TSP) on these graphs. The graphs obtained are large in number of vertices and edges and the real-time applications require good computation speed. Hence a model is built using Graph Convolution Network (GCN). The model is effectively trained with different problem instances such as TSP20, TSP50, and TSP100. Results obtained from the Concorde Benchmark Dataset were used to analyze the optimality of the predicted tour length by the GCN. The model is also evaluated against the performance of evolutionary algorithms on several self-constructed graphs. Particle Swarm Optimization, Ant Colony Optimization, and Firefly Algorithm are used to find optimal tours and are compared with GCN. It is found that the proposed GCN framework outperforms these evolutionary algorithms in optimal tour length and also the computation time.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"25 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Automation and Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/iasc.2022.020974","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

Abstract

Unmanned Aerial Vehicles (UAVs) are in use for surveillance services in the geographic areas, that are very hard and sometimes not reachable by humans. Nowadays, UAVs are being used as substitutions to manned operations in various applications. The intensive utilization of autonomous UAVs has given rise to many new challenges. One of the vital problems that arise while deploying UAVs in surveillance applications is the Coverage Path Planning(CPP) problem. Given a geographic area, the problem is to find an optimal path/tour for the UAV such that it covers the entire area of interest with minimal tour length. A graph can be constructed from the map of the area under surveillance, using computational geometric techniques. In this work, the Coverage Path Planning problem is posed as a Travelling Salesperson Problem(TSP) on these graphs. The graphs obtained are large in number of vertices and edges and the real-time applications require good computation speed. Hence a model is built using Graph Convolution Network (GCN). The model is effectively trained with different problem instances such as TSP20, TSP50, and TSP100. Results obtained from the Concorde Benchmark Dataset were used to analyze the optimality of the predicted tour length by the GCN. The model is also evaluated against the performance of evolutionary algorithms on several self-constructed graphs. Particle Swarm Optimization, Ant Colony Optimization, and Firefly Algorithm are used to find optimal tours and are compared with GCN. It is found that the proposed GCN framework outperforms these evolutionary algorithms in optimal tour length and also the computation time.
基于图卷积网络的智能无人机最优路径规划
无人驾驶飞行器(uav)用于地理区域的监视服务,这些区域非常困难,有时人类无法到达。目前,无人机在各种应用中被用作载人操作的替代品。自主无人机的集约化应用带来了许多新的挑战。在监视应用中部署无人机时出现的重要问题之一是覆盖路径规划(CPP)问题。给定一个地理区域,问题是为无人机找到一个最优路径/行程,使其以最小的行程长度覆盖整个感兴趣的区域。利用计算几何技术,可以从监视区域的地图构建图形。在这项工作中,覆盖路径规划问题被提出为这些图上的旅行销售人员问题(TSP)。所得到的图的顶点和边数较多,实时应用对计算速度要求较高。在此基础上,利用图卷积网络(GCN)建立模型。该模型通过TSP20、TSP50和TSP100等不同的问题实例进行有效训练。从协和式基准数据集获得的结果用于分析GCN预测行程长度的最优性。该模型还与进化算法在几个自构造图上的性能进行了比较。采用粒子群算法、蚁群算法和萤火虫算法寻找最优路径,并与GCN算法进行比较。结果表明,所提出的GCN框架在最优行程长度和计算时间上都优于这些进化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligent Automation and Soft Computing
Intelligent Automation and Soft Computing 工程技术-计算机:人工智能
CiteScore
3.50
自引率
10.00%
发文量
429
审稿时长
10.8 months
期刊介绍: An International Journal seeks to provide a common forum for the dissemination of accurate results about the world of intelligent automation, artificial intelligence, computer science, control, intelligent data science, modeling and systems engineering. It is intended that the articles published in the journal will encompass both the short and the long term effects of soft computing and other related fields such as robotics, control, computer, vision, speech recognition, pattern recognition, data mining, big data, data analytics, machine intelligence, cyber security and deep learning. It further hopes it will address the existing and emerging relationships between automation, systems engineering, system of systems engineering and soft computing. The journal will publish original and survey papers on artificial intelligence, intelligent automation and computer engineering with an emphasis on current and potential applications of soft computing. It will have a broad interest in all engineering disciplines, computer science, and related technological fields such as medicine, biology operations research, technology management, agriculture and information technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信