{"title":"OPERATIONAL ANALYSIS IN SYSTEM DESIGN OF SUBMARINES DURING THE EARLY PHASES","authors":"M. Nordin","doi":"10.3940/RINA.IJME.2015.A1.312","DOIUrl":"https://doi.org/10.3940/RINA.IJME.2015.A1.312","url":null,"abstract":"This paper presents a new method for operational analysis (OA) as a tool in simulation based design (SBD) for Naval Integrated Complex Systems (NICS), here applied to the submarine domain. An operational analysis model is developed and described. The first step of the design process is to identify and collect the needs from the customer and stakeholders, from which requirements can be deduced and designed in an organized way, i.e. requirement elucidation. It is important to evaluate the benefits or penalties of each requirement on the design as early as possible during initial design. Thus the OA-model must be able to evaluate requirements aggregated in synthesised ships such as initial concepts, i.e. Play-Cards, as representations of a submarine concept in the functions domain where the first set of requirements are designed, and establish their Measure of Capability (MoC) and Measure of Effectiveness (MoE). The work has resulted in an OA-model for submarine design that can be used during the development and for evaluation during the life cycle of a submarine system. The purpose of integrating OA in the design process is to explore the design space and evaluate not only technical solutions and cost but also the system effect in the early phases and thereby find and describe a suitable design room. This will generate a more rapid knowledge growth compared to the classic basic ship design procedures which focus on technical performance and cost. It is expected that we not only reach a higher level of knowledge about the design object but also achieve higher precision in the compliance to needs and deduced and designed requirements by the use of an OA-model as an integrated tool during initial design. This approach also invites customer participation within the framework of integrated project teams.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45658182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MULTIPARAMETRIC DIAGNOSTICS OF GAS TURBINE ENGINES","authors":"J. Sinay, A. Tompos, M. Puškár, V. Peťková","doi":"10.5750/ijme.v156ia2.923","DOIUrl":"https://doi.org/10.5750/ijme.v156ia2.923","url":null,"abstract":"This article addresses the issue of diagnostics and maintenance of Gas Turbine Engines which are located in high Speed Ferries, Cruisers, Frigates, Corvettes, etc. Assurance of reliable operation can be performed only by using correct diagnostic methods and procedures of monitoring the condition of the devices and by selecting the correct strategy of maintenance. The issue of monitoring the technical condition of Gas Turbine Engines is treated through multiparametric methods of technical diagnostics incorporated into predictive maintenance, which is a part of proactive maintenance. There are methods of vibrodiagnostics, thermography, tribology, borescopy and emissions measurement. Each of these methods has lots of advantages and disadvantages; therefore it is very important to ensure their correct combination for trouble-free operation of those important facilities. Their suitability at work is discussed in the matrix of diagnostic methods application and the PF chart. The output of the work is a proposal of a suitable model of maintenance control which uses multiparametric diagnostic methods for small and big Gas Turbine Engines and optimizes maintenance costs.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45733869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PASSENGER RESPONSE TIME DATA- SETS FOR LARGE PASSENGER FERRIES AND CRUISE SHIPS DERIVED FROM SEA TRIALS","authors":"R. Brown, E. Galea, S. Deere, L. Filippidis","doi":"10.5750/ijme.v155ia2.899","DOIUrl":"https://doi.org/10.5750/ijme.v155ia2.899","url":null,"abstract":"\u0000 \u0000 \u0000The paper consists of 27 figures; numerous equations and 12 notes/ references, many of which are written by the authors of this paper. Whilst this may indicate a lack of “reading around the subject” it also indicates the unique nature of the topic and that little exists at present in the public domain about this topic. Indeed the authors and the research group they represent are the main contributors to the IMOs discussions and circulars on this subject. Given that background the paper is very detailed and consists of comparisons between the evacuation times of 3 passenger ships, 2 being Ro-Pax vessels and 1 a cruise liner. On board evacuation time statistics have been gathered from significant populations enabling the authors to draw significant conclusions relating to evacuation times in the presented scenarios. The paper is therefore a useful addition to the debates on this subject which is of major relevance to the understanding of evacuation times in passenger vessels. Data and research in this area is difficult to obtain thus the authors should be congratulated for their work. \u0000 \u0000 \u0000","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43916230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STUDY OF GAS FUEL LEAKAGE AND EXPLOSION IN THE ENGINE ROOM OF A SMALL LNG-FUELED SHIP","authors":"Q. Zheng, W. Q. Wu, M. Song","doi":"10.5750/ijme.v161ia3.1096","DOIUrl":"https://doi.org/10.5750/ijme.v161ia3.1096","url":null,"abstract":"The engine fuel piping in LNG-fuelled ships’ engine room presents potential gas explosion risks due to possible gas fuel leakage and dispersion. A 3D CFD model with chemical reaction was described, validated and then used to simulate the possible gas dispersion and the consequent explosions in an engine room with regulations commanded ventilations. The results show that, with the given minor leaking of a fuel pipe, no more than 1kg of methane would accumulate in the engine room. The flammable gas clouds only exit in limited region and could lead to explosions with an overpressure about 12 mbar, presenting no injury risk to personnel. With the given major leaking, large region in the engine room would be filled with flammable gas cloud within tens of seconds. The gas cloud might lead to an explosion pressure of about 1 bar or higher, which might result in serious casualties in the engine room.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44259757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"AN AHP MODEL FOR THE CHOICE OF SHIP FLAG: A CASE STUDY OF TAIWANESE SHIPOWNERS","authors":"C. Chou, J. F. Ding","doi":"10.5750/ijme.v158ia1.974","DOIUrl":"https://doi.org/10.5750/ijme.v158ia1.974","url":null,"abstract":"The choice of an appropriate ship flag for the existing fleet or new-building ships is one of important issues of shipowners. The main purpose of this paper is to construct an Analytic Hierarchy Process (AHP) model for the choice of ship flag. An application of the proposed AHP model to the case study on the ship flag choice of Taiwanese shipowners is shown in this article. The results show that the most important influential factors on the ship flag choice of Taiwanese shipowners are in order of the importance as follows: (a) crew cost, (b) incentive, (c) fiscal reason, (d) dual class expense, (e) tax-related expense, (f) PSC inspection, (g) freedom to employ foreign crew, (h) priority to transport, (i) ship registry process, (j) market consideration, (k) level of bureaucracy, and (l) law restrictions. The top four nations for Flag of Convenience (FOC) registry are in order of shipowner’s preferences as follows: (a) Panama, (b) Liberia, (c) Hong Kong, and (d) Singapore. The above findings can be a reference for the maritime departments of Taiwanese government transportation to help the maritime departments offer response strategies and policies for future development of national ship registration system.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48698842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LIFE-CYCLE CO2 EMISSIONS OF BULK CARRIERS: A COMPARATIVE STUDY","authors":"G. A. Gratsos, H. Psaraftis, P. Zachariadis","doi":"10.5750/ijme.v152ia3.833","DOIUrl":"https://doi.org/10.5750/ijme.v152ia3.833","url":null,"abstract":"In order to maintain shipping capacity to serve seaborne trade, new ships have to be built to replace those scrapped. The cost of building, manning, operating, maintaining and repairing a ship throughout its life is borne by society at large through market mechanisms. Gratsos and Zachariadis (2005) had investigated through a cost/benefit analysis how the average annual cost of ship transport varies with the corrosion additions elected at the design stage. The results of that paper clearly indicated that ships built with sufficient corrosion allowances, truly adequate for the ship’s design life, have a lower life cycle cost per annum despite the fact that such ships would carry a slightly smaller quantity of cargo. Furthermore the safety and environmental benefits due to the reduced repairs and extended lifetime of such ships were briefly discussed. The debate of how “robust” a ship should be was also transferred to IMO in the context of Goal Based Standards following a submission by Japan which stated that the increased steel weight of a more robust ship will result in increased CO2 emissions due to a reduced cargo carrying capacity. Greece replied by submitting a summary of the aforementioned paper and preliminary estimations on Life cycle CO2 emissions disputing the Japanese contentions. However, taking onboard the challenge, an update is provided in the present paper, using the final Common Structural Rules (CSR) of the International Association of Classification Societies (IACS) bulk carrier corrosion margins and taking into account the major environmental implications of the heavier ship scantlings for two bulk carrier size brackets, Panamax and Handymax. The results show that the more robust ships would produce less CO2 emissions over their lifetime.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46572033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"LOADING RESPONSE OF STERN TAB MOTION CONTROLS IN SHALLOW WATER","authors":"J. Bell, J. Lavroff, M. R. Davis","doi":"10.5750/ijme.v158ia2.980","DOIUrl":"https://doi.org/10.5750/ijme.v158ia2.980","url":null,"abstract":"The ride control systems of high-speed vessels frequently use active stern tabs for both motion control and maintenance of correct trim at various speeds and sea conditions. This paper investigates the effect of water depth on the lift force provided by stern mounted trim tabs, of the type fitted to INCAT high speed wave-piercer catamaran vehicle ferries and similar vessels. This investigation was carried out at model scale with the use of a test apparatus in a flume tank in the University of Tasmania hydraulics laboratory. The lift force magnitude and location were measured over a range of tab angles and flow depths. This was used to calculate the lift coefficient of the tab and asses the performance of the tab over the range of flow depths. It was found that the lift force increased and the force location progressed further forward of the hinge as flow depth decreased. The lift curve slope of the stern tab increased by a factor of over 3 relative to the deep water value when the water depth below the hull was approximately equal to the tab chord. The deep water lift curve slope appears to be approached only when the water depth exceeded 4 or more tab chord lengths. The centre of pressure of the lift force was more than two chord lengths ahead of the tab hinge, showing that most of the lift produced by the tab was under the hull rather than on the surface of the tab itself.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47683283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"METHODOLOGIES TO PREDICT HYDRODYNAMIC CHARACTERISTICS OF PUSHER AND PULLER PODDED PROPULSORS IN OBLIQUE FLOWS","authors":"M. F. Islam, F. Jahra","doi":"10.5750/ijme.v158ia4.1000","DOIUrl":"https://doi.org/10.5750/ijme.v158ia4.1000","url":null,"abstract":"This paper presents the outcome of a numerical simulation based research program to evaluate the propulsive characteristics of puller and pusher podded propulsors in a straight course and at static azimuthing conditions while operating in open water. Methodologies to predict the propeller thrust and torque, and pod forces and moments in three dimensions using a Reynolds-Averaged Navier Stokes (RANS) solver at multiple azimuthing conditions and pod configurations are presented. To obtain insight into the reliability and accuracy of the results, grid and time step dependency studies are conducted for a podded propulsor in straight-ahead condition. The simulation techniques and results are first validated against measurements of a bare propeller and a podded propulsor in straight ahead condition for multiple loading scenarios and in both puller and pusher configurations. Next, simulations were carried out to model the podded propulsors in the two configurations at multiple loading conditions and at various azimuthing angles from +30° to –30° in 15° increments. The majority of the simulations are carried out using both steady state and unsteady state conditions, primarily to evaluate the effect of setup conditions on the computation time and prediction accuracy. The predicted performance characteristics of the pod unit using the unsteady RANS method were within 1% to 5% of the corresponding experimental measurements for all the loading conditions, azimuthing angles and pod configurations studied. The non-linear behaviour of the performance coefficients of the pod unit are well captured at various loading and azimuthing conditions in the predicted results. This study demonstrates that the RANS solver, with proper meshing arrangement, boundary conditions and setup techniques can predict the performance characteristics of the podded propulsor in multiple azimuthing angles, pod configurations and in the various loading conditions with a same level of accuracy as experimental results. Additionally, the velocity and pressure distributions on and around the pod-strut- propeller bodies are discussed as derived from the RANS predictions.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47736759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EFFECT OF WATERTIGHT SUBDIVISION ON DAMAGE STABILITY OF RO-RO FERRIES","authors":"M. Pawłowski, A. Laskowski","doi":"10.5750/ijme.v156ia2.921","DOIUrl":"https://doi.org/10.5750/ijme.v156ia2.921","url":null,"abstract":"Effect of various subdivision arrangements of ro-ro vessels on damage stability is discussed. The arrangements included single and double sides both below and above the car deck, with and without a double buoyant car deck, and with or with- out a watertight tween deck below the car deck. This gave as many as 16 various arrangements for each compartment length. The double sides both above and below the car deck are of the same width b = 0.1B. The double bottom, when not flooded, worsens damage stability. The car deck and tween decks should be ‘openwork’, to be transparent for water and air. Oth- erwise, the ship can capsize at the very initial stages of flooding. Double sides and a double car deck together improve con- siderably damage stability, both in terms of maximum arm and range. A new characteristic was introduced, termed the critical deck height. Flooding a deck above the critical height leads to a rapid capsizing of the ship.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49375245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STUDY ON PROPULSIVE PERFORMANCE OF TWO GEOMETRICALLY SIMILAR PODDED PROPULSORS","authors":"M. Islam, A. Akinturk, B. Veitch, Pengfei Liu","doi":"10.5750/ijme.v155ia4.909","DOIUrl":"https://doi.org/10.5750/ijme.v155ia4.909","url":null,"abstract":"This paper presents the outcome of a research to evaluate the effect of size on the propulsive performance of podded propulsors in cavitating and non-cavitating open water conditions. Two cases are examined, namely: propeller-only case and pod-unit case. In the propeller-only case, a commercial propeller dynamometer is used to measure the thrust and torque of two propellers of different size at the four quadrants of propellers with varied shaft and flow speeds. Also, both propellers are tested at different tunnel pressure to study and compare the behaviour under similar cavitation conditions. In the pod-unit case, two geometrically similar but different sized pod-units are tested using two separate custom-made pod dynamometer systems in two towing tank facilities in straight-ahead and static azimuthing conditions. The study showed that the performance characteristics stabilize at lower Reynolds Number for the smaller propeller than the larger propeller. The propulsive performance of the two propellers was comparable in the four-quadrant experiments. Also, the experiments at the cavitating conditions showed that the cavitation characteristics of the two propellers were consistent at corresponding operating conditions. The experiment results of the two pod-units were also comparable for forces and moments in the three coordinate directions in the straight-ahead and static azimuthing conditions. A brief discussion on the uncertainty assessments for each of the measurements is also presented.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.4,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41751525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}