K Nivetha, K Vijaya Kumar, N Krishna Jyothi, K Venkataratnam Kamma
{"title":"Exploring the synergistic potential of PVB: KCl composite electrolyte films for enhanced performance in solid-state potassium batteries","authors":"K Nivetha, K Vijaya Kumar, N Krishna Jyothi, K Venkataratnam Kamma","doi":"10.1007/s12034-024-03340-y","DOIUrl":"10.1007/s12034-024-03340-y","url":null,"abstract":"<div><p>Polyvinyl butyral (PVB) integrated with varying compositions of potassium chloride (KCl) was prepared through a solution-cast method in methanol, forming a PVB-based electrolyte film for solid-state potassium batteries. The incorporation of KCl into PVB matrix significantly altered the composite electrolyte film’s structural intricacies, bandgap modulation, thermal stability and facilitated functional group identification. Furthermore, the ionic conductivity of the PVB polymer electrolyte exhibited an initial enhancement followed by a subsequent reduction with the escalating ratio of KCl. Specifically, at 80 wt% PVB and 20 wt% KCl, its ionic conductivity reached a value of 1.87 × 10<sup>−5</sup> S cm<sup>−1</sup> at room temperature and 9.61 × 10<sup>−5</sup> S cm<sup>−1</sup> at 303 K temperature. The ion transference number, which denotes the relative ease with which potassium ions migrate within the PVB polymer-complexed electrolyte, was determined to be 0.98. Discharge tests on the cell, under 1.2 µA current and 2.1 V at room temperature, displayed an initial 9.16 µA h<sup>−1</sup> discharge capacity.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sukhdeep Kaur, Rupendeep Kaur, Deep Kamal Kaur Randhawa, Rahul Sharma, Harmandar Kaur
{"title":"Doping-induced electronic transport properties in tetracene-based molecular device","authors":"Sukhdeep Kaur, Rupendeep Kaur, Deep Kamal Kaur Randhawa, Rahul Sharma, Harmandar Kaur","doi":"10.1007/s12034-024-03324-y","DOIUrl":"10.1007/s12034-024-03324-y","url":null,"abstract":"<div><p>Non-equilibrium Green’s function (NEGF) and density functional theory (DFT) calculations are used to explore the impact of doping on the electron transport properties in a single tetracene molecule linked to gold electrodes using isocyanide anchoring groups. Boron (B) and Nitrogen (N) atoms are used for doping and co-doping (BN) of the carbon atoms placed at the edge of the tetracene molecule. It was found that the chemical doping of tetracene molecules mainly impacts the rectification trends compared to non-doped molecules. Our findings indicate that B doping significantly improves the rectification ratio compared to other dopants because of a greater difference between the current values under positive and negative biases as a result of asymmetric <i>I-V</i> characteristics. These inferences have also been assessed in terms of MPSH and transmission spectra. In addition, novel characteristic of negative differential resistance (NDR) is attained in single dopant molecular junctions.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P Chandramohan, R Raghu, K Dharmaseelan, S Harinadh
{"title":"Influence of heat treatment and anodizing on the corrosion behaviour of additive manufactured AlSi10Mg alloy","authors":"P Chandramohan, R Raghu, K Dharmaseelan, S Harinadh","doi":"10.1007/s12034-024-03223-2","DOIUrl":"10.1007/s12034-024-03223-2","url":null,"abstract":"<div><p>Additive manufacturing (AM) processes produce complex and multifunctional items by layering pre-alloyed powder. Among them, direct metal laser sintering (DMLS) process encourages creation of distinct microstructures and internal phase distributions. These microstructures possess substantial influence on corrosion performance and mechanisms of corrosion resistance-improving surface treatments, such as anodizing. Hence, this study emphasize on corrosion performance of anodized and unanodized heat-treated AlSi10Mg samples manufactured through DMLS method. As built AlSi10Mg samples were subjected to stress relieving and T6 heat-treatment. The heat-treated samples were further subjected to anodizing process in H<sub>2</sub>SO<sub>4</sub> electrolyte solution. Microstructural characterization of unanodized and anodized heat-treated samples was performed through microscopy analysis. In addition, corrosion experiments were performed in 1 M H<sub>2</sub>SO<sub>4</sub> solution on anodized and unanodized heat-treated samples to determine <i>E</i><sub>corr</sub>, <i>I</i><sub>corr</sub> and corrosion rate values. The corroded samples are further characterized to understand different failure mechanisms.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation on impedance spectroscopy and transport properties of co-doped bismuth ferrite ceramics","authors":"H Hemanta Singh, H Basantakumar Sharma","doi":"10.1007/s12034-024-03246-9","DOIUrl":"10.1007/s12034-024-03246-9","url":null,"abstract":"<div><p>Yttrium (Y) and cobalt (Co) co-doped bismuth ferrite (BFO) nanopowders were synthesized by the sol–gel method. The purity of the phase of the samples was confirmed by the X-ray diffraction technique. Both grains and grain boundaries contribute to the electrical response of the samples. The modulus studies show that the charge carriers can perform both long- and short-range mobility. Meanwhile, the Nyquist plot analysis confirms the samples’ non-Debye-type relaxation behaviour and negative temperature coefficient resistance nature. The frequency-dependent AC conductivity obeys the power law <span>(Aomega^{s})</span> at a higher frequency. AC conductivity increases from 1.300 × 10<sup>–5</sup> to 8.463 × 10<sup>–4</sup> S m<sup>–1</sup>, increasing Y and Co contents in the BFO sample. The temperature dependence of the AC conductivity suggests the presence of different conduction processes for all the samples.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarita, Pal Manisha Dayaram, Ambak K Rai, Ravi Prakash Tewari, Pradip Kumar Dutta
{"title":"Synthesis and characterization of injectable chitosan, hyaluronic acid, and hydroxyapatite blend hydrogel aimed at bone tissue engineering application","authors":"Sarita, Pal Manisha Dayaram, Ambak K Rai, Ravi Prakash Tewari, Pradip Kumar Dutta","doi":"10.1007/s12034-024-03315-z","DOIUrl":"10.1007/s12034-024-03315-z","url":null,"abstract":"<div><p>The current study aims to prepare and compare three injectable hydrogels consisting of chitosan, hyaluronic acid, and hydroxyapatite in different combinations using two solvents and homoginizer that can be employed in bone tissue engineering (BTE) for remodelling and healing bones. The hydrogel structures were well characterized by FT-IR, XRD and SEM analyses. Surface study, porosity, percolation capacity, bone cell adhesion and proliferation, and swelling properties were tested and was found that these hydrogels are better candidates for BTE. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) analysis showed better compatibility with mononuclear cells derived from human peripherals. Our findings suggest that these hydrogels can be efficiently used as injectable hydrogels in BTE applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deniz Gültekin, Erhan Duru, Serdar Aslan, Hatem Akbulut
{"title":"Investigation of the solid self-lubricating effect on tribological properties of Al/SiC/Gr composites against steel disc","authors":"Deniz Gültekin, Erhan Duru, Serdar Aslan, Hatem Akbulut","doi":"10.1007/s12034-024-03339-5","DOIUrl":"10.1007/s12034-024-03339-5","url":null,"abstract":"<div><p>The present work examines the tribological characteristics of cast aluminium–silicon matrix composites reinforced with silicon carbide (SiC) and graphite (Gr). The metal matrix composite samples were manufactured using stir and squeeze casting techniques, employing an Al–Si matrix alloy and integrating particulate SiC and varying quantities of graphite particles. To investigate the impact of varying amounts of graphite on the Al/SiC composite, graphite particles were included at volumetric proportions of 5, 7.5 and 10%. Before being integrated into the matrix, Cu-coating was employed on graphite particles using electroless coating to enhance the adhesion with the matrix composition. Tribological experiments were conducted on Al/SiC and the Al/SiC/Gr composites using a pin-on-disc tribometer apparatus. Al–SiC and Al/SiC/Gr samples were specifically engineered and employed as a pin, while AISI 8620 steel was utilized as a disc. Adding graphite particles to the Al/SiC composite decreased the amount of wear and friction. The utilization of hybrid Al/SiC/Gr composites resulted in the creation of tribo-layers during sliding, hence minimizing the occurrence of grooves, plowing and smearing.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Materials for Energy and Sustainable Development","authors":"","doi":"10.1007/s12034-024-03319-9","DOIUrl":"10.1007/s12034-024-03319-9","url":null,"abstract":"","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A green approach to energy storage properties of polyaniline","authors":"Aranganathan Viswanathan, Adka Nityananda Shetty","doi":"10.1007/s12034-024-03329-7","DOIUrl":"10.1007/s12034-024-03329-7","url":null,"abstract":"<div><p>The green energy storage of polyaniline, without major wastages excreted into the environment is effectively demonstrated by using the polyaniline as supercapacitor electrode and the by-product obtained during the synthesis of polyaniline as its electrolyte. This green approach to the energy storage properties of sulphuric acid doped polyaniline (H-PANI) exhibited a substantial improvement in its energy storage, compared to the conventional approach of using an ionically conducting liquid as electrolyte like 1 M H<sub>2</sub>SO<sub>4</sub> (SA), separately. The amelioration of 40.44% was achieved when the by-product obtained as supernatant liquid (SL) was used as electrolyte compared to SA. The H-PANI provided a specific capacity (<i>Q</i>) of 146.4 C g<sup>−1</sup>, a specific energy (<i>E</i>) of 24.40 W h kg<sup>−1</sup> and a specific power (<i>P</i>) of 1.200 kW kg<sup>−1</sup> at 1 A g<sup>−1</sup> in the presence of SA. The <i>Q</i> of 205.6 C g<sup>−1</sup>, <i>E</i> of 34.26 W h kg<sup>−1</sup> (similar range of <i>E</i> of Pb-acid batteries), <i>P</i> of 1.200 kW kg<sup>−1</sup> were achieved in the presence of SL at 1 A g<sup>−1</sup> and a high rate capability of 29.18% retention of initial <i>Q</i> up to 25 A g<sup>−1</sup> was also achieved. This approach is useful to harvest high energy characters from PANI.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashwini Devidas, T Sankarappa, Amarkumar Malge, Mohansingh Heerasingh, Jamadar Pallavi
{"title":"Optical and radiation shielding studies on La2O3-mixed zinc-borovanadate glasses","authors":"Ashwini Devidas, T Sankarappa, Amarkumar Malge, Mohansingh Heerasingh, Jamadar Pallavi","doi":"10.1007/s12034-024-03299-w","DOIUrl":"10.1007/s12034-024-03299-w","url":null,"abstract":"<div><p>Lead-free glasses of composition, (ZnO)<sub>0.3</sub>–(V<sub>2</sub>O<sub>5</sub>)<sub>0.3-<i>x</i></sub>–(B<sub>2</sub>O<sub>3</sub>)<sub>0.4</sub>–(La<sub>2</sub>O<sub>3</sub>)<sub><i>x</i></sub>; <i>x</i> = 0.01–0.05 were made by melt-quenching procedure. Their amorphous nature was established. FTIR studies revealed that functional groups are present in the glasses. Band (indirect) gaps obtained from UV–Vis absorption spectra, increased with increase in La<sub>2</sub>O<sub>3</sub> content from 2.505 to 2.828 eV. Urbach energy and refractive index were decreased from 0.397 to 0.292 eV and 2.544–2.440, respectively, with La<sub>2</sub>O<sub>3</sub>. Various optical parameters have been estimated. These suggest the suitability of these glasses for photoelectronic applications. Using Phy-X/PSD and XCOM softwares, gamma- and neutron-shielding parameters were evaluated for photon energy range of 0.15–15 MeV. Mass and linear attenuation coefficients were found to increase with increase in La<sub>2</sub>O<sub>3</sub> mole fractions. Minimum half value and tenth value layers (HVL, TVL) of the glasses at 0.015 MeV, are found to lie between 0.007 and 0.006 cm, and 0.0260 and 0.0211 cm, respectively. Maximum exposure build-up factors (EBF) at 0.4 MeV for 40 mean free path (MFP) were found in the range of 199.37–110.26 and energy absorption build-up factors (EABF) in the range of 407.98–220.11. Removal cross-sections for fast neutrons were estimated to be in the range of 0.1001–0.1036 cm<sup>−1</sup>. Radiation-shielding parameters, such as HVL, TVL, MFP, <i>Z</i><sub>eff</sub>, <i>Z</i><sub>eq</sub>, EBF and EABF values were found to be lesser and Σ<sub>R</sub> values were greater than reported values for several boro-vanadate glasses, commercial glasses, IL, HSC, BM, ordinary concrete and ilmenite concretes. Radiation-protection efficiency of the present glasses was found to increase with La<sub>2</sub>O<sub>3</sub> content and decrease with photon energy. Therefore, these glasses are proposed for both gamma- and neutron-shielding applications.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Si4+ substitution on structural and dielectric properties of Si-mixed Ga2O3 compounds","authors":"Amit Kumar Singh, Saurabh Yadav, Y S Katharria","doi":"10.1007/s12034-024-03336-8","DOIUrl":"10.1007/s12034-024-03336-8","url":null,"abstract":"<div><p>In this study, the impact of Si<sup>4+</sup> substitution on the structural and dielectric properties of Ga<sub>2</sub>O<sub>3</sub> powder was investigated in detail. High-temperature solid-state chemical reaction method was employed to prepare pure and Si-mixed Ga<sub>2</sub>O<sub>3</sub> compounds. The formation of the monoclinic structure of Ga<sub>2</sub>O<sub>3</sub> was confirmed through X-ray diffraction pattern. Field emission scanning electron microscopy micrographs revealed agglomerated particles. All prepared samples consisted of particles with sizes in the range of 0.191 to 0.202 µm. The X-ray photoelectron spectroscopy (XPS) analysis of Ga 2p reveals a positive shift as compared to metallic Ga due to the interaction between the electron cloud of adjacent ions. XPS analyses, which considered the Ga 2p doublet (Ga 2p<sub>3/2</sub> and Ga 2p<sub>1/2</sub> peaks), also indicate that Ga exists in its highest chemical valence state (Ga<sup>3+</sup>) in the sample. The frequency dependence of the dielectric constant, ac conductivity and dielectric loss of the synthesized samples was investigated at room temperature (RT). The dielectric constant increases with an increase in Si concentration at RT.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"47 4","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}