mxene辅助ETLs对钙钛矿太阳能电池中一维ChPbI3晶体吸收层的影响

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahdiyeh Meskini, Mohammad Ali Fooladloo, Saeid Asgharizadeh, Saeid Khesali Azadi
{"title":"mxene辅助ETLs对钙钛矿太阳能电池中一维ChPbI3晶体吸收层的影响","authors":"Mahdiyeh Meskini,&nbsp;Mohammad Ali Fooladloo,&nbsp;Saeid Asgharizadeh,&nbsp;Saeid Khesali Azadi","doi":"10.1007/s12034-025-03449-8","DOIUrl":null,"url":null,"abstract":"<div><p>Choline halide can effectively passivate defects by binding with charged point defects of perovskite. Experimental results at room temperature demonstrated that the reaction of ChI with CsPbI<sub>3</sub> resulted in the formation of a new one-dimensional (1D) crystal phase of ChPbI<sub>3</sub>, characterized by synchrotron high-resolution single-crystal X-ray diffraction. Due to the new 1D crystalline phase, the designed structures witnessed considerable photovoltaic improvement. The SCAPS-1D simulation software was used to model a perovskite solar cell featuring a 1D ChPbI<sub>3</sub> absorber. We studied the performance of perovskite solar cells based on a 1D ChPbI<sub>3</sub> absorber layer with different electron/hole transport layers (ETL/HTL). Parameters such as power conversion efficiency (PCE), open-circuit voltage (<i>V</i><sub>OC</sub>), short-circuit current density (<i>J</i><sub>SC</sub>), fill factor (FF), external quantum efficiency (EQE), ideality factor (<i>n</i><sub>id</sub>), photocurrent (<i>J</i><sub>Ph</sub>), Mott–Schottky (M–S) plot, built-in potential (<i>V</i><sub>bi</sub>) and recombination resistance (<i>R</i><sub>rec</sub>) were calculated. The analysis of interface recombination currents indicates that the solar cell with CuSCN as the HTL and TiO<sub>2</sub>-MXene as the ETL exhibits the highest performance. By optimizing this type of cell, it is possible to achieve an efficiency of 25.50%.</p></div>","PeriodicalId":502,"journal":{"name":"Bulletin of Materials Science","volume":"48 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of one-dimensional crystal ChPbI3 absorber layer in perovskite solar cells with MXene-assisted ETLs\",\"authors\":\"Mahdiyeh Meskini,&nbsp;Mohammad Ali Fooladloo,&nbsp;Saeid Asgharizadeh,&nbsp;Saeid Khesali Azadi\",\"doi\":\"10.1007/s12034-025-03449-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Choline halide can effectively passivate defects by binding with charged point defects of perovskite. Experimental results at room temperature demonstrated that the reaction of ChI with CsPbI<sub>3</sub> resulted in the formation of a new one-dimensional (1D) crystal phase of ChPbI<sub>3</sub>, characterized by synchrotron high-resolution single-crystal X-ray diffraction. Due to the new 1D crystalline phase, the designed structures witnessed considerable photovoltaic improvement. The SCAPS-1D simulation software was used to model a perovskite solar cell featuring a 1D ChPbI<sub>3</sub> absorber. We studied the performance of perovskite solar cells based on a 1D ChPbI<sub>3</sub> absorber layer with different electron/hole transport layers (ETL/HTL). Parameters such as power conversion efficiency (PCE), open-circuit voltage (<i>V</i><sub>OC</sub>), short-circuit current density (<i>J</i><sub>SC</sub>), fill factor (FF), external quantum efficiency (EQE), ideality factor (<i>n</i><sub>id</sub>), photocurrent (<i>J</i><sub>Ph</sub>), Mott–Schottky (M–S) plot, built-in potential (<i>V</i><sub>bi</sub>) and recombination resistance (<i>R</i><sub>rec</sub>) were calculated. The analysis of interface recombination currents indicates that the solar cell with CuSCN as the HTL and TiO<sub>2</sub>-MXene as the ETL exhibits the highest performance. By optimizing this type of cell, it is possible to achieve an efficiency of 25.50%.</p></div>\",\"PeriodicalId\":502,\"journal\":{\"name\":\"Bulletin of Materials Science\",\"volume\":\"48 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12034-025-03449-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12034-025-03449-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卤化胆碱与钙钛矿带电点缺陷结合,能有效钝化缺陷。室温下的实验结果表明,ChI与CsPbI3反应形成了新的一维(1D) ChPbI3晶相,并通过同步加速器高分辨率单晶x射线衍射进行了表征。由于新的1D晶相,设计的结构有了相当大的光伏改善。利用SCAPS-1D仿真软件对具有1D ChPbI3吸收体的钙钛矿太阳能电池进行了建模。研究了具有不同电子/空穴传输层(ETL/HTL)的一维ChPbI3吸收层钙钛矿太阳能电池的性能。计算了功率转换效率(PCE)、开路电压(VOC)、短路电流密度(JSC)、填充因子(FF)、外量子效率(EQE)、理想因子(nid)、光电流(JPh)、莫特-肖特基图(M-S)、内置电位(Vbi)和复合电阻(Rrec)等参数。界面复合电流分析表明,以CuSCN为HTL, TiO2-MXene为ETL的太阳能电池性能最好。通过优化这种类型的电池,有可能达到25.50%的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of one-dimensional crystal ChPbI3 absorber layer in perovskite solar cells with MXene-assisted ETLs

Choline halide can effectively passivate defects by binding with charged point defects of perovskite. Experimental results at room temperature demonstrated that the reaction of ChI with CsPbI3 resulted in the formation of a new one-dimensional (1D) crystal phase of ChPbI3, characterized by synchrotron high-resolution single-crystal X-ray diffraction. Due to the new 1D crystalline phase, the designed structures witnessed considerable photovoltaic improvement. The SCAPS-1D simulation software was used to model a perovskite solar cell featuring a 1D ChPbI3 absorber. We studied the performance of perovskite solar cells based on a 1D ChPbI3 absorber layer with different electron/hole transport layers (ETL/HTL). Parameters such as power conversion efficiency (PCE), open-circuit voltage (VOC), short-circuit current density (JSC), fill factor (FF), external quantum efficiency (EQE), ideality factor (nid), photocurrent (JPh), Mott–Schottky (M–S) plot, built-in potential (Vbi) and recombination resistance (Rrec) were calculated. The analysis of interface recombination currents indicates that the solar cell with CuSCN as the HTL and TiO2-MXene as the ETL exhibits the highest performance. By optimizing this type of cell, it is possible to achieve an efficiency of 25.50%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Materials Science
Bulletin of Materials Science 工程技术-材料科学:综合
CiteScore
3.40
自引率
5.60%
发文量
209
审稿时长
11.5 months
期刊介绍: The Bulletin of Materials Science is a bi-monthly journal being published by the Indian Academy of Sciences in collaboration with the Materials Research Society of India and the Indian National Science Academy. The journal publishes original research articles, review articles and rapid communications in all areas of materials science. The journal also publishes from time to time important Conference Symposia/ Proceedings which are of interest to materials scientists. It has an International Advisory Editorial Board and an Editorial Committee. The Bulletin accords high importance to the quality of articles published and to keep at a minimum the processing time of papers submitted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信