Tao Leng, Pengfei Duan, Dongwei Hu, Gaofeng Cui, Weidong Wang
{"title":"Cooperative user association and resource allocation for task offloading in hybrid GEO‐LEO satellite networks","authors":"Tao Leng, Pengfei Duan, Dongwei Hu, Gaofeng Cui, Weidong Wang","doi":"10.1002/sat.1436","DOIUrl":"https://doi.org/10.1002/sat.1436","url":null,"abstract":"Hybrid geosynchronous earth orbit (GEO) and low earth orbit (LEO) satellite networks play an important role in future satellite‐assisted internet of things (S‐IoT). However, the limited satellite on‐board communication and computing resource poses a large challenge for the task offloading in the hybrid GEO‐LEO satellite networks. In this paper, the problem of task offloading is formulated as a cooperative user association and resource allocation problem. To tackle the problem, we model it as a Markov decision process and decompose it into two sub‐problems, which are sequential decisions for user association and resource allocation with fixed user association conditions. Deep reinforcement learning (DRL) is adopted to make sequential decisions to achieve long‐term benefits, and convex optimization method is utilized to obtain optimal communication and computing resource allocation. Simulation results show that the proposed method is superior to other referred schemes.","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"40 1","pages":"230 - 243"},"PeriodicalIF":1.7,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43571551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fan Lu, Yu Jiang, Rui Wang, Hu Wang, Pengfei Zhao, Hongbo Wei, Bing Ma, Chao Ma
{"title":"System demonstrations of Ka‐band 5‐Gbps data transmission for satellite applications","authors":"Fan Lu, Yu Jiang, Rui Wang, Hu Wang, Pengfei Zhao, Hongbo Wei, Bing Ma, Chao Ma","doi":"10.1002/sat.1434","DOIUrl":"https://doi.org/10.1002/sat.1434","url":null,"abstract":"Satellite‐ground‐link high‐rate high‐efficiency data transmission technique is one of the key supports for the development of high‐resolution low‐earth‐orbit (LEO) earth observation satellite systems. Ka‐band, frequency ranging from 24.6 to 40 GHz, shares a wide available bandwidth, high frequency reuse rate, and strong ability of anti‐jamming. Satellite operators have utilized the Ka‐band for satellite‐earth data transmission, which requires higher traffic capacity, and even have planned to launch new satellites with Ka‐band capacity. In this paper, we propose and experimentally demonstrate a 5‐Gbps uncoded data rate (corresponding to the channel rate of 6 Gbps) of Ka‐band data‐transmission system with dual‐circular polarization and frequency reuse for satellite‐earth applications. The objective of the experiment is gathering experimental data to validate the performance of the proposed four channel systems, including bit error ratio (BER) and link budget. Our work could support future satellite communication applications and meet the imperative demands of high rate transmission to earth.","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"40 1","pages":"204 - 217"},"PeriodicalIF":1.7,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43326061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolas Kuhn, François Michel, Ludovic Thomas, Emmanuel Dubois, Emmanuel Lochin, Francklin Simo, David Pradas
{"title":"QUIC: Opportunities and threats in SATCOM","authors":"Nicolas Kuhn, François Michel, Ludovic Thomas, Emmanuel Dubois, Emmanuel Lochin, Francklin Simo, David Pradas","doi":"10.1002/sat.1432","DOIUrl":"https://doi.org/10.1002/sat.1432","url":null,"abstract":"<div>\u0000 \u0000 <p>This article proposes a discussion on the strengths, weaknesses, opportunities, and threats related to the deployment of QUIC end-to-end from a satellite-operator point-of-view. The deployment of QUIC is an opportunity for improving the quality of experience when exploiting satellite broadband accesses. Indeed, the fast establishment of secured connections reduces the transmission time of short files. Moreover, removing transport-layer performance-enhancing proxies reduces the cost of network infrastructures and improves the integration of satellite systems. However, the congestion and flow controls at end points are not always suitable for satellite communications due to the intrinsic high bandwidth-delay product. Further acceptance of QUIC in satellite systems would be guaranteed if its performance in specific use cases were increased. Based on an emulated platform and on open-source software, this paper proposes values of performance metrics as one piece of the puzzle. The final performance objective requires consensus among the different actors. The objective should at least provide acceptable performance for satellite operators to allow QUIC traffic but reasonable enough to keep QUIC deployable on the Internet.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"40 6","pages":"379-391"},"PeriodicalIF":1.7,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137470643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CCAKESC: Chaotic map‐based construction of a new authenticated key exchange protocol for satellite communication","authors":"Uddeshaya Kumar, Manish Garg","doi":"10.1002/sat.1435","DOIUrl":"https://doi.org/10.1002/sat.1435","url":null,"abstract":"Recently, many authentication schemes were proposed by researchers in the satellite communication environment. Unfortunately, several types of security flaws occur in relative works (Qi et al., 2019; Xu, 2019; Liu et al., 2017; Altaf et al., 2020), such as off‐line guessing attacks, smart card stolen attacks and replay attacks. In this paper, we proposed a secure authentication technique based on chaotic maps to solve these drawbacks. To establish the security of the proposed scheme, we employ formal proof under the random oracle model. In addition, an informal study with various security properties is provided to augment the security characteristics. Furthermore, we compare our protocol to several current schemes and demonstrate that our plan meets the security criteria while being cost‐effective. As a result, it is more suited to the satellite communication environment.","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"40 1","pages":"218 - 229"},"PeriodicalIF":1.7,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45523140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exclusion zone minimization and optimal operational mode selection for co‐existent geostationary and non‐geostationary satellites","authors":"F. Öztürk, A. Kara","doi":"10.1002/sat.1433","DOIUrl":"https://doi.org/10.1002/sat.1433","url":null,"abstract":"The number of satellites has been increasing in both geostationary (GEO) and non‐geostationary (NGEO) earth orbits. Due to the limited availability of spectrum resources, the interference risk among these satellite networks has been increasing consequently. In such a scenario, the protection of existent GEO transmissions is crucial. In this paper, the co‐existence downlink interference from a typical low earth orbit (LEO) constellation to earth stations of GEO satellites is examined for minimization of exclusion zone on the equatorial region. Two different operational scenario based on modulation and coding (MODCOD) with/without spread spectrum for the LEO system are considered. A multiobjective optimization problem (MOP) is formulated for nondominant solutions set based on exclusive angle minimization and bandwidth utilization of the LEO link. It is shown that the exclusive angle can be reduced up to 21.3% and 19.6%, compared with the initial anchor point at the transmission bit rates of 100 and 200 Mbps, respectively. The proposed optimal operational setting minimizes the interference risk to the GEO satellite network as well as maintains quality of service (QoS) for the LEO communication network. The results provide optimal operational mode selection for LEO satellite operators and/or decision makers.","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"40 1","pages":"191 - 203"},"PeriodicalIF":1.7,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46582172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On jamming detection methods for satellite Internet of Things networks","authors":"G. Taricco, N. Alagha","doi":"10.1002/sat.1431","DOIUrl":"https://doi.org/10.1002/sat.1431","url":null,"abstract":"Despite the fast growth of machine‐type communications via satellite, the vulnerability of such networks to intentional interference and malicious jamming attacks is a raising concern. Specifically, in this paper, we address a class of jamming attacks in which the adversary uses the underlying knowledge of the satellite physical and access protocol to increase the jamming impact. In particular, we focused on a type of camouflage jamming attack (using publicly known preamble) to deceive the receiver, which rapidly leads to poor performance. Compared to conventional constant jamming attacks, these jamming strategies are known to be more effective and potentially more harmful to the targeted communication network. We analyze methods to detect such jamming attacks and provide examples of jamming detection techniques for the satellite Internet of Things (IoT) networks. Results indicate the effective performance of the jamming detection techniques for a variety of representative system parameters. More specifically, we introduce a simple (counting) jamming detection method along with numerical results for realistic system parameters, which confirms system design vulnerability as well as how the jammer may improve her strategy.","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"40 1","pages":"177 - 190"},"PeriodicalIF":1.7,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46665789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atmospheric absorption and scattering impact on optical satellite-ground links","authors":"Dirk Giggenbach, Amita Shrestha","doi":"10.1002/sat.1426","DOIUrl":"10.1002/sat.1426","url":null,"abstract":"<p>Free-space radio-frequency (RF) communication links for intersatellite or satellite-to-ground communications are getting increasingly constraint by the insufficient spectrum availability and limited data rate of RF technology. With the advent of large satellite mega-constellation networks for global communications coverage, this limitation of classical RF communication becomes even more critical. Therefore, the establishment of point-to-point free-space optical link technology (FSO) in space will become of paramount importance in future systems, where the application will be for data-relays links, or for mega-constellations inter-satellite links, as well as for direct data downlinks, or from deep-space probes to ground. Further advantages of optical FSO—besides spectrum availability—is its increased power efficiency, higher data rates, avoidance of interference, and inherent protection against interception. When, however, these optical communication links have to pass through Earth's atmosphere, attenuation and scattering effects do influence the signal transmission. In this publication, we investigate the effects of atmospheric attenuation, including the effects of molecular absorption as well as aerosol scattering and absorption, for typical wavelength regions used for FSO, dependent on the link geometries. Based on transmission-simulation databases, we show useful spectral ranges and their specific attenuation strength. Free spectral transmission windows dependent on atmospheric quality and elevation angle are identified for reliable and efficient use of the optical transmission technology in space applications.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"40 2","pages":"157-176"},"PeriodicalIF":1.7,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1426","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45289148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Giambene, Iago Gomez, Tomaso de Cola, Roshith Sebastian, MD Saifur Rahman
{"title":"Satellite forward VDES channel modeling and impact on higher-layer performance","authors":"Giovanni Giambene, Iago Gomez, Tomaso de Cola, Roshith Sebastian, MD Saifur Rahman","doi":"10.1002/sat.1430","DOIUrl":"10.1002/sat.1430","url":null,"abstract":"<div>\u0000 \u0000 <p>VHF data exchange system (VDES) is an emerging maritime communications standard that is meant to provide ship-to-shore, shore-to-ship, and ship-to-ship information services. VDES also includes a satellite component to extend the service coverage also to the high sea. Ships can receive important information via VDES and access this service via satellite when they are far from the shore. This paper uses data taken during a measurement campaign to develop an ON-OFF model for the VDE-SAT downlink channel taking the multipath effects caused by sea reflections into account. This model has been used to evaluate the impact of packet-level forward error correction (FEC) schemes (i.e., ideal codes, RaptorQ codes, and 2-Dimension Reed-Solomon codes) to further protect transmissions from deep fading events and to evaluate the impact at the transport level considering the possibility to adopt the transmission control protocol (TCP) for a file map delivery service.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"41 2","pages":"102-121"},"PeriodicalIF":1.7,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47952611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of a 3D ray-tracing model based on digital elevation model for comprehension of large- and small-scale propagation phenomena over the Martian surface","authors":"Stefano Bonafini, Claudio Sacchi","doi":"10.1002/sat.1423","DOIUrl":"10.1002/sat.1423","url":null,"abstract":"<p>The aim of the scientific community, towards the investigation of solutions able to favor a futuristic human settlement on Mars, also concerns ad hoc communication systems and wireless networks to be deployed over the “Red planet.” However, the state-of-the-art appears to be missing of realistic and replicable models for understanding the radio propagation over precise Martian locations. This means that performing solid simulations, rather than roughly approximated ones, is really a tough task. Thus, this paper describes the design of a 3D ray-tracing simulator based on high-resolution digital elevation models (DEMs) for the evaluation of Martian large-scale and small-scale phenomena in the S and EHF bands. First, by taking advantage of the Cole–Cole equations, we computed the complex permittivity of the JSC Mars-1 Martian regolith simulant. Then, we developed a 3D tile-based structure of the Gale crater, thanks to its DEM, and finally, we implemented a ray-tracing algorithm for outdoor environments able to trace the line of sight (LOS), the first and second reflections of a radio frequency (RF) signal between a transmitter (TX) and a receiver (RX) over the 3D structure. The results focus on estimating path losses, shadowing values, outage probability, and on the parametrization of multipath channels for selected areas and subareas, presenting heavily different morphological features, of the Gale crater. Moreover, some brief considerations about dust storms and atmosphere harmful effects on propagation will be drawn.</p>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"40 6","pages":"408-427"},"PeriodicalIF":1.7,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sat.1423","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42080788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance bounds for VDE-SAT R-Mode","authors":"Jan Šafář, Alan Grant, Martin Bransby","doi":"10.1002/sat.1429","DOIUrl":"10.1002/sat.1429","url":null,"abstract":"<div>\u0000 \u0000 <p>There has been growing interest within the satellite navigation community in the possibility of delivering positioning and timing services from existing or emerging constellations of Low-Earth Orbit communication satellites. At the same time, the international maritime community has been investigating the potential use of communication signals transmitted from shore-based stations for positioning—a concept commonly referred to as ‘ranging mode’, or R-Mode. The driving force for these developments is the desire to reduce the reliance on traditional Global Navigation Satellite Systems (GNSS). One of the technologies being considered for use in R-Mode is the evolution of the Automatic Identification System (AIS) known as the Very High Frequency Data Exchange System (VDES). VDES has a terrestrial and a satellite component. The feasibility of using terrestrial VDES transmissions for ranging was studied in a previous publication by the authors. This paper builds on the previous study and extends its results to the satellite component of VDES. Statistical bounds on the ranging error are derived for all downlink waveforms currently being considered for use in satellite VDES and for several custom-designed transmission formats. The analysis supports the feasibility of using both the existing and custom waveforms in ranging applications and points to related trade-offs that will need to be considered in the design of satellite VDES R-Mode systems.</p>\u0000 </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"41 2","pages":"134-157"},"PeriodicalIF":1.7,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45295442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}