Dorin Panaitopol, Yiran Jin, Runsen Tang, Changhwan Park
{"title":"Requirements on Satellite Access Node and User Equipment for Non-Terrestrial Networks in 5G New Radio of 3GPP Release-17","authors":"Dorin Panaitopol, Yiran Jin, Runsen Tang, Changhwan Park","doi":"10.1002/sat.1459","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>For the first time, 3GPP considered in Release-17 the introduction of mobile satellite service (MSS) frequency bands for 3GPP user equipment (UE) direct connectivity with satellites and had to consider the coexistence in adjacent bands with terrestrial networks (TNs). This paper will further explain the most challenging and the main surprising outcomes of this work, which opened new market opportunities for both terrestrial and nonterrestrial stakeholders. 5G New Radio nonterrestrial networks (NTNs) for satellite communications are representing a major breakthrough in the history of telecommunication for the capability of reuniting two different types of services, that is, terrestrial and nonterrestrial, by reusing the same waveform and potentially the same type of terminal. One of the major conclusions of the 5G NR NTN 3GPP work in Release-17 was that NTN UE could reuse the current requirements of the TN UE. For this reason, the same terminal can connect to both TNs and to nonterrestrial satellite constellations. Consequently, the market is not fragmented and therefore there will be a real opportunity for both terrestrial and satellite operators to increase the coverage and the quality of the service all over the world. This is one of the most important breakthroughs that 3GPP Release-17 work was able to justify because it clearly shows that satellite connectivity using 5G NR technology is not only for dedicated satellite 5G NR UE with a higher power class. On the other hand, the 3GPP work also shows that the satellite connectivity does not require a dedicated satellite waveform, because 5G NR waveform based on CP-OFDM (for downlink) and DFT-s-OFDM (for uplink) is sufficient. Another important finding is that TN can coexist with NTN on adjacent channels with relaxed ACIR requirements for the tested simulation scenarios. In fact, the satellite 5G NR requirements are lower when compared with terrestrial base station (BS) requirements from previous 3GPP releases. The satellite ecosystem tremendously changed after these findings, and both satellite and terrestrial stakeholders now see a potential market opportunity.</p>\n </div>","PeriodicalId":50289,"journal":{"name":"International Journal of Satellite Communications and Networking","volume":"41 3","pages":"289-301"},"PeriodicalIF":0.9000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Satellite Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sat.1459","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1
Abstract
For the first time, 3GPP considered in Release-17 the introduction of mobile satellite service (MSS) frequency bands for 3GPP user equipment (UE) direct connectivity with satellites and had to consider the coexistence in adjacent bands with terrestrial networks (TNs). This paper will further explain the most challenging and the main surprising outcomes of this work, which opened new market opportunities for both terrestrial and nonterrestrial stakeholders. 5G New Radio nonterrestrial networks (NTNs) for satellite communications are representing a major breakthrough in the history of telecommunication for the capability of reuniting two different types of services, that is, terrestrial and nonterrestrial, by reusing the same waveform and potentially the same type of terminal. One of the major conclusions of the 5G NR NTN 3GPP work in Release-17 was that NTN UE could reuse the current requirements of the TN UE. For this reason, the same terminal can connect to both TNs and to nonterrestrial satellite constellations. Consequently, the market is not fragmented and therefore there will be a real opportunity for both terrestrial and satellite operators to increase the coverage and the quality of the service all over the world. This is one of the most important breakthroughs that 3GPP Release-17 work was able to justify because it clearly shows that satellite connectivity using 5G NR technology is not only for dedicated satellite 5G NR UE with a higher power class. On the other hand, the 3GPP work also shows that the satellite connectivity does not require a dedicated satellite waveform, because 5G NR waveform based on CP-OFDM (for downlink) and DFT-s-OFDM (for uplink) is sufficient. Another important finding is that TN can coexist with NTN on adjacent channels with relaxed ACIR requirements for the tested simulation scenarios. In fact, the satellite 5G NR requirements are lower when compared with terrestrial base station (BS) requirements from previous 3GPP releases. The satellite ecosystem tremendously changed after these findings, and both satellite and terrestrial stakeholders now see a potential market opportunity.
期刊介绍:
The journal covers all aspects of the theory, practice and operation of satellite systems and networks. Papers must address some aspect of satellite systems or their applications. Topics covered include:
-Satellite communication and broadcast systems-
Satellite navigation and positioning systems-
Satellite networks and networking-
Hybrid systems-
Equipment-earth stations/terminals, payloads, launchers and components-
Description of new systems, operations and trials-
Planning and operations-
Performance analysis-
Interoperability-
Propagation and interference-
Enabling technologies-coding/modulation/signal processing, etc.-
Mobile/Broadcast/Navigation/fixed services-
Service provision, marketing, economics and business aspects-
Standards and regulation-
Network protocols