A. Rasool, Muhammad Faheem Ud Din Afzal, Muhammad Usman Rashid
{"title":"Enhancing Seismic Resilience: Evaluating Buildings with Passive Energy Dissipation Strategies","authors":"A. Rasool, Muhammad Faheem Ud Din Afzal, Muhammad Usman Rashid","doi":"10.3390/eng5010020","DOIUrl":"https://doi.org/10.3390/eng5010020","url":null,"abstract":"Structures are recommended to be designed and constructed with the integration of structural health monitoring techniques to ensure that they can dissipate a large amount of energy without considerable damage when subjected to earthquakes. Hysteretic (H), friction (F), viscous (V), and viscoelastic (VE) dampers were employed in this study to observe the response of buildings using the commercially available software ETABS. The effect of different dampers along with configurations on three prototype concrete buildings (3, 5, and 10-storey) was studied by performing a time history analysis. Initially, the response of the buildings was observed in terms of storey drifts, base shear, and displacement without using dampers, while gradually increasing the damping ratio from 0 to 40%. Subsequently, the response of the buildings was evaluated in terms of displacements and base shear using various types of dampers with different configurations. The analysis results demonstrated that the effectiveness of viscous and viscoelastic dampers is higher for 3 and 5-storey buildings, while friction and hysteresis dampers are more suitable for 10-storey buildings. This information enables informed decisions regarding the performance and maintenance of dampers, contributing to the overall resilience and durability of structures in seismic events.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"3 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140440728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdelrahman Elesawy, Eslam Mohammed Abdelkader, Hesham Osman
{"title":"A Detailed Comparative Analysis of You Only Look Once-Based Architectures for the Detection of Personal Protective Equipment on Construction Sites","authors":"Abdelrahman Elesawy, Eslam Mohammed Abdelkader, Hesham Osman","doi":"10.3390/eng5010019","DOIUrl":"https://doi.org/10.3390/eng5010019","url":null,"abstract":"For practitioners and researchers, construction safety is a major concern. The construction industry is among the world’s most dangerous industries, with a high number of accidents and fatalities. Workers in the construction industry are still exposed to safety risks even after conducting risk assessments. The use of personal protective equipment (PPE) is essential to help reduce the risks to laborers and engineers on construction sites. Developments in the field of computer vision and data analytics, especially using deep learning algorithms, have the potential to address this challenge in construction. This study developed several models to enhance the safety compliance of construction workers with respect to PPE. Through the utilization of convolutional neural networks (CNNs) and the application of transfer learning principles, this study builds upon the foundational YOLO-v5 and YOLO-v8 architectures. The resultant model excels in predicting six key categories: person, vest, and four helmet colors. The developed model is validated using a high-quality CHV benchmark dataset from the literature. The dataset is composed of 1330 images and manages to account for a real construction site background, different gestures, varied angles and distances, and multi-PPE. Consequently, the comparison among the ten models of YOLO-v5 (You Only Look Once) and five models of YOLO-v8 showed that YOLO-v5x6’s running speed in analysis was faster than that of YOLO-v5l; however, YOLO-v8m stands out for its higher precision and accuracy. Furthermore, YOLOv8m has the best mean average precision (mAP), with a score of 92.30%, and the best F1 score, at 0.89. Significantly, the attained mAP reflects a substantial 6.64% advancement over previous related research studies. Accordingly, the proposed research has the capability of reducing and preventing construction accidents that can result in death or serious injury.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"15 34","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140442978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Marques, F. Wrobel, Y. Aguiar, A. Michez, J. Boch, Frédéric Saigné, R. García Alía
{"title":"A Methodology to Estimate Single-Event Effects Induced by Low-Energy Protons","authors":"C. Marques, F. Wrobel, Y. Aguiar, A. Michez, J. Boch, Frédéric Saigné, R. García Alía","doi":"10.3390/eng5010017","DOIUrl":"https://doi.org/10.3390/eng5010017","url":null,"abstract":"This work explains that the Coulomb elastic process on the nucleus is a major source of single-event effects (SEE) for protons within the energy range of 1–10 MeV. The infinite range of Coulomb interactions implies an exceptionally high recoil probability. This research seeks to extend the investigations under which the elastic process becomes significant in the energy deposition process by providing a simplified methodology to evaluate the elastic contribution impact on the reliability of electronics. The goal is to derive a method to provide a simple way to calculate and predict the SEE cross-section. At very low energy, we observe a significant increase in the proton differential cross-section. The use of a direct Monte Carlo approach would mainly trigger low energy recoiling ions, and a very long calculation time would be necessary to observe the tail of the spectrum. In this sense, this work provides a simple methodology to calculate the SEE cross-section. The single-event upset (SEU) cross-section results demonstrate a good agreement with the experimental data in terms of shape and order of magnitude for different technological nodes.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"102 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140451407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Smith–Watson–Topper Parameter in Partial Slip Bimodal Oscillations of Axisymmetric Elastic Contacts of Similar Materials: Influence of Load Protocol and Profile Geometry","authors":"E. Willert","doi":"10.3390/eng5010018","DOIUrl":"https://doi.org/10.3390/eng5010018","url":null,"abstract":"Based on a very fast numerical procedure for the determination of the subsurface stress field beneath frictional contacts of axisymmetric elastic bodies under arbitrary 2D oblique loading, the contact mechanical influences of loading parameters and contact profile geometry on the Smith–Watson–Topper (SWT) fatigue crack initiation parameter in elastic fretting contacts with superimposed normal and tangential oscillations are studied in detail. The efficiency of the stress calculation allows for a comprehensive physical analysis of the multi-dimensional parameter space of influencing variables. It is found that a superimposed normal oscillation of the contact can significantly increase or decrease the SWT parameter, depending on the initial phase difference and frequency ratio between the normal and tangential oscillation. Written in proper non-dimensional variables, the rounded flat punch always exhibits smaller values of the SWT parameter, compared to a full paraboloid with the same curvature, while the truncated paraboloid exhibits larger values. A small superimposed profile waviness also significantly increased or decreased the SWT parameter, depending on the amplitude and wave length of the waviness. While both the load protocol and the profile geometry can significantly alter the SWT parameter, the coupling between both influencing factors is weak.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"120 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140449492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Wyrwich, Kathrin Boelsen, G. Jacobs, T. Zerwas, G. Höpfner, C. Konrad, J. Berroth
{"title":"Seamless Function-Oriented Mechanical System Architectures and Models","authors":"Christian Wyrwich, Kathrin Boelsen, G. Jacobs, T. Zerwas, G. Höpfner, C. Konrad, J. Berroth","doi":"10.3390/eng5010016","DOIUrl":"https://doi.org/10.3390/eng5010016","url":null,"abstract":"One major challenge of today’s product development is to master the constantly increasing product complexity driven by the interactions between different disciplines, like mechanical, electrical and software engineering. An approach to master this complexity is function-oriented model-based systems engineering (MBSE). In order to guide the developer through the process of transferring requirements into a final product design, MBSE methods are essential. However, especially in mechanics, function-oriented product development is challenging, as functionality is largely determined by the physical effects that occur in the contacts of physical components. Currently, function-oriented MBSE methods enable either the modeling of contacts or of structures as part of physical components. To create seamless function-oriented mechanical system architectures, a holistic method for modeling contacts, structures and their dependencies is needed. Therefore, this paper presents an extension of the motego method to model structures, by which the seamless parametric modeling of function-oriented mechanical system architectures from requirements to the physical product is enabled.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"40 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139798493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Wyrwich, Kathrin Boelsen, G. Jacobs, T. Zerwas, G. Höpfner, C. Konrad, J. Berroth
{"title":"Seamless Function-Oriented Mechanical System Architectures and Models","authors":"Christian Wyrwich, Kathrin Boelsen, G. Jacobs, T. Zerwas, G. Höpfner, C. Konrad, J. Berroth","doi":"10.3390/eng5010016","DOIUrl":"https://doi.org/10.3390/eng5010016","url":null,"abstract":"One major challenge of today’s product development is to master the constantly increasing product complexity driven by the interactions between different disciplines, like mechanical, electrical and software engineering. An approach to master this complexity is function-oriented model-based systems engineering (MBSE). In order to guide the developer through the process of transferring requirements into a final product design, MBSE methods are essential. However, especially in mechanics, function-oriented product development is challenging, as functionality is largely determined by the physical effects that occur in the contacts of physical components. Currently, function-oriented MBSE methods enable either the modeling of contacts or of structures as part of physical components. To create seamless function-oriented mechanical system architectures, a holistic method for modeling contacts, structures and their dependencies is needed. Therefore, this paper presents an extension of the motego method to model structures, by which the seamless parametric modeling of function-oriented mechanical system architectures from requirements to the physical product is enabled.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"2 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139858228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. El Bitouri, Bouagui Fofana, R. Léger, Didier Perrin, P. Ienny
{"title":"The Effects of Replacing Sand with Glass Fiber-Reinforced Polymer (GFRP) Waste on the Mechanical Properties of Cement Mortars","authors":"Y. El Bitouri, Bouagui Fofana, R. Léger, Didier Perrin, P. Ienny","doi":"10.3390/eng5010014","DOIUrl":"https://doi.org/10.3390/eng5010014","url":null,"abstract":"The aim of this study is to examine the effect of the partial replacement of sand by Glass Fiber-Reinforced Polymer (GFRP) waste on the mechanical properties of cement mortars. Compressive and flexural tests were carried out on mortars containing 0, 3, 5, 10, and 15% (by volume) of GFRP waste. It appears that the incorporation of 3% GFRP waste did not significantly affect the mechanical strength. However, further increasing the GFRP waste content led to a reduction in the mechanical strength. The flexural strength seemed less affected than the compressive strength, since the decrease in flexural strength at a 10% replacement was only 37%, while it was 54% for the compressive strength. However, an improvement in the toughness of the mortar with an increase in the substitution rate was observed. The reference sample displayed a flexural toughness of 0.351 N·m, while the mortar incorporating 15% of GFRP exhibited a flexural toughness of 0.642 N·m. The reuse of GFRP waste in cementitious materials, therefore, constitutes an interesting recycling solution.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"12 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140488969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimum Path Planning Using Dragonfly-Fuzzy Hybrid Controller for Autonomous Vehicle","authors":"Brijesh Patel, Varsha Dubey, Snehlata Barde, Nidhi Sharma","doi":"10.3390/eng5010013","DOIUrl":"https://doi.org/10.3390/eng5010013","url":null,"abstract":"Navigation poses a significant challenge for autonomous vehicles, prompting the exploration of various bio-inspired artificial intelligence techniques to address issues related to path generation, obstacle avoidance, and optimal path planning. Numerous studies have delved into bio-inspired approaches to navigate and overcome obstacles. In this paper, we introduce the dragonfly algorithm (DA), a novel bio-inspired meta-heuristic optimization technique to autonomously set goals, detect obstacles, and minimize human intervention. To enhance efficacy in unstructured environments, we propose and analyze the dragonfly–fuzzy hybrid algorithm, leveraging the strengths of both approaches. This hybrid controller amalgamates diverse features from different methods into a unified framework, offering a multifaceted solution. Through a comparative analysis of simulation and experimental results under varied environmental conditions, the hybrid dragonfly–fuzzy controller demonstrates superior performance in terms of time and path optimization compared to individual algorithms and traditional controllers. This research aims to contribute to the advancement of autonomous vehicle navigation through the innovative integration of bio-inspired meta-heuristic optimization techniques.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"385 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140490799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Rock Classification Systems: A Comprehensive Review with Emphasis on Artificial Intelligence Techniques","authors":"Gang Niu, Xuzhen He, Haoding Xu, Shaoheng Dai","doi":"10.3390/eng5010012","DOIUrl":"https://doi.org/10.3390/eng5010012","url":null,"abstract":"At the initial phases of tunnel design, information on rock properties is often limited. In such instances, the engineering classification of the rock is recommended as a primary assessment of its geotechnical condition. This paper reviews different rock mass classification methods in the tunnel industry. First, some important considerations for the classification of rock are discussed, such as rock quality designation (RQD), uniaxial compressive strength (UCS) and groundwater condition. Traditional rock classification methods are then assessed, including the rock structure rating (RSR), rock mass rating (RMR), rock mass index (RMI), geological strength index (GSI) and tunnelling quality index (Q system). As RMR and the Q system are two commonly used methods, the relationships between them are summarized and explored. Subsequently, we introduce the detailed application of artificial intelligence (AI) method on rock classification. The advantages and limitations of traditional methods and artificial intelligence (AI) methods are indicated, and their application scopes are clarified. Finally, we provide suggestions for the selection of rock classification methods and prospect the possible future research trends.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"26 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139597195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Multi-Parameter Flexible Smart Water Gauge for the Accurate Monitoring of Urban Water Levels and Flow Rates","authors":"Selamu Wolde Sebicho, Baodong Lou, Bethel Selamu Anito","doi":"10.3390/eng5010011","DOIUrl":"https://doi.org/10.3390/eng5010011","url":null,"abstract":"Urban drainage and waterlogging prevention are critical components of urban water management systems, as they help to mitigate the risks of flooding and water damage in cities. The accurate collection of liquid level and flow rate data at the end of these systems is crucial for their effective monitoring and management. However, existing water equipment for this purpose has several shortcomings, including limited accuracy, inflexibility, and difficulty in operation under specific working conditions. A new type of multi-parameter flexible smart water gauge was developed to address these issues. This technology uses underwater simulation robot technology and is designed to overcome the deficiencies of existing water equipment. The flexibility of the gauge allows it to be adapted to different working conditions, ensuring accurate data collection even in challenging environments. The accuracy of the new water gauge was tested through a series of experiments, and the results showed that it was highly accurate in measuring both liquid level and flow rate. This new technology has the potential to be a key tool in smart water conservancy, enabling the more efficient and accurate monitoring of water levels and flow rates. By providing a new solution to the problem of collecting terminal equipment for urban drainage and waterlogging prevention, this technology can help to improve the resilience and sustainability of urban water management systems.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"85 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139612803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}