Journal of Building Physics最新文献

筛选
英文 中文
Hygrothermal performance of a brick wall with interior insulation in cold climate: Vapour open versus vapour tight approach 寒冷气候条件下带内部保温的砖墙的湿热性能:蒸汽开放与蒸汽封闭方法
IF 2 4区 工程技术
Journal of Building Physics Pub Date : 2021-11-12 DOI: 10.1177/17442591211056067
P. Klõšeiko, T. Kalamees
{"title":"Hygrothermal performance of a brick wall with interior insulation in cold climate: Vapour open versus vapour tight approach","authors":"P. Klõšeiko, T. Kalamees","doi":"10.1177/17442591211056067","DOIUrl":"https://doi.org/10.1177/17442591211056067","url":null,"abstract":"Interior insulation of historic buildings is well-studied in Central Europe; however, their conclusions might not be directly applicable to colder climates. Heat, air and moisture (HAM) modelling can be a valuable tool for studying those solutions in different conditions. Recently, incorporating the capillary condensation redistribution (CCR) test into the material characterization process has shown to cause dramatic improvement in correlating hygrothermal modelling results to measurements in certain situations. It is also noteworthy, that the HAM modelling errors made using material data from conventional characterization process can be severely non-conservative. In this article a parametric study of a 51 cm thick mass masonry wall is undertaken to determine the effect of the improved material properties on the reliability of a vapour open ‘capillary active’ autoclaved aerated concrete (AAC) and calcium silicate (CaSi) interior insulation solutions and to compare them to a vapour tight insulation system. A 49-year real weather dataset from Estonia is used. The results show that compared to conventionally characterized material properties the CCR-optimized material data causes more critical conditions directly behind the interior insulation, while having a similar performance in the exterior part of the masonry. The differences occur close to the performance limits and highlight the importance of using the CCR test in material characterization process. The vapour tight and vapour open systems showed a very similar impact on the freeze-thaw cycles and on the maximum ice saturation of the exterior part of the masonry. The vapour open solutions perform better than the vapour tight PIR in terms of frost damage and possible mould growth behind the insulation – even though the advantage has been reduced when using the CCR-optimized material data. Regardless of the insulation solution, a case-specific approach is still required to avoid damaging the original wall and/or the added insulation system.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87852915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Development of a numerical approach to assess the effect of coupled heat and moisture transfer on energy consumption of residential buildings in Moroccan context 开发一种数值方法来评估摩洛哥环境中热湿耦合传递对住宅建筑能耗的影响
IF 2 4区 工程技术
Journal of Building Physics Pub Date : 2021-11-01 DOI: 10.1177/17442591211056068
Yassine Chbani Idrissi, R. Belarbi, M. Ferroukhi, M. Feddaoui, D. Agliz
{"title":"Development of a numerical approach to assess the effect of coupled heat and moisture transfer on energy consumption of residential buildings in Moroccan context","authors":"Yassine Chbani Idrissi, R. Belarbi, M. Ferroukhi, M. Feddaoui, D. Agliz","doi":"10.1177/17442591211056068","DOIUrl":"https://doi.org/10.1177/17442591211056068","url":null,"abstract":"Hygrothermal properties of building materials, climatic conditions and energy performance are interrelated and have to be considered simultaneously as part of an optimised building design. In this paper, a new approach to evaluate the energy consumption of residential buildings in Morocco is presented. This approach is based on the effect of coupled heat and moisture transfer in typical residential buildings and on their responses to the varied climatic conditions encountered in the country. This approach allows us to evaluate with better accuracy the response of building energy performance and the indoor comfort of building occupants. Annual energy consumption, cooling and heating energy requirements were estimated considering the six climatic zones of Morocco. Based on the results, terms related to coupled heat and moisture transfer can effectively correct the existing energy consumption calculations of the six zones of Morocco, which currently do not consider energy consumption due to coupled heat and moisture transfer.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91376326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Performance evaluation of glass wool core VIPs and silica-fly ash core VIPs 玻璃棉芯vip和二氧化硅-粉煤灰芯vip性能评价
IF 2 4区 工程技术
Journal of Building Physics Pub Date : 2021-10-28 DOI: 10.1177/17442591211056066
A. Shahzad, Zhaofeng Chen, Zaffar M. Khan, Desire Emefa Awuye
{"title":"Performance evaluation of glass wool core VIPs and silica-fly ash core VIPs","authors":"A. Shahzad, Zhaofeng Chen, Zaffar M. Khan, Desire Emefa Awuye","doi":"10.1177/17442591211056066","DOIUrl":"https://doi.org/10.1177/17442591211056066","url":null,"abstract":"Temperature maintenance is one of the leading factors for the large-scale energy consumption in buildings, which accounts for 33% of the total consumption. The heavy smog in China resulting from the depletion of fossil fuels necessitates the development of new technologies that can reduce the energy usage in buildings. Several techniques for building’s thermal insulation were developed among which the utilization of Vacuum Insulation Panels (VIPs) has the leading edge. For refrigeration purpose in VIPs, the glass wool is being used as a core material because of their low thermal conductivity (λ ≤ 2 mW/m·K) and low cost. However, the silica-fly ash has been preferred as a core material of VIPs for buildings because of its high compressive strength (σc > 2 MPa) and the most economical price. Moreover, the P1/2 of the glass wool VIP and silica-fly ash VIP are 10–100 and 1000 Pa, respectively. In this work, the performance of VIPs with various cores has been compared. The thermal conductivity of VIPs, along with the factors affecting thermal conductivity, such as density, thickness, internal pressure, and porous structures, have been evaluated. In addition, the effect of core materials on the cost of VIPs was also quantified. It is expected that the study will serve as a pioneering work in the foundation to development of the next-generation, low-cost VIPs used for building insulations.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84610986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of variability in hygrothermal properties on analytical results of simultaneous heat and moisture transfer in porous materials 湿热特性变化对多孔材料热湿同步传递分析结果的影响
IF 2 4区 工程技术
Journal of Building Physics Pub Date : 2021-10-20 DOI: 10.1177/17442591211034194
Hiroaki Yamamoto, S. Takada
{"title":"Influence of variability in hygrothermal properties on analytical results of simultaneous heat and moisture transfer in porous materials","authors":"Hiroaki Yamamoto, S. Takada","doi":"10.1177/17442591211034194","DOIUrl":"https://doi.org/10.1177/17442591211034194","url":null,"abstract":"Depending on the data source used, the material hygrothermal properties that are used in the numerical analysis of simultaneous heat and moisture transfer will not be consistent. Differences in measurement methods and the individuality of specimens account for this. It is necessary to choose values from these different physical property sets to conduct a numerical calculation, which can cause the calculated results to differ. The subsequent range of variation in the calculated results should be quantitatively evaluated. In this study, the physical properties of several types of porous building materials were first gathered from four databases. The data were then categorized based on the kind of material and compared in terms of each physical property (density, porosity, specific heat, moisture capacity, thermal conductivity, and vapor permeability). The density, porosity, and specific heat varied by 10% on average, and the moisture capacity, thermal conductivity, and vapor permeability varied by 20% or more for all types of materials. In particular, the vapor permeability of plywood and moisture capacity of gypsum board differed by 50%. The influence that these physical property value variations had on hygrothermal calculation results was then quantitatively demonstrated for moisture and heat flow rate under a step change in the relative humidity or temperature of indoor air for a single layer wall. The moisture and heat flow rate into a single layer wall fluctuated by approximately 10%–40% due to differences in the vapor permeability and moisture capacity of the materials. For all types of materials, moisture was transferred more slowly than heat. Therefore, differences in moisture property values, such as vapor permeability and moisture capacity, influenced the results more significantly. Moreover, the moisture flow was accompanied by a phase change. The differences in moisture property values thus affected the heat flow.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80944954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Investigation into the hygrothermal behavior of fired clay materials during the freezing of supercooled water using experiments and numerical simulations 用实验和数值模拟研究了烧制粘土材料在过冷水冻结过程中的湿热行为
IF 2 4区 工程技术
Journal of Building Physics Pub Date : 2021-10-05 DOI: 10.1177/17442591211041144
Kazuma Fukui, C. Iba, M. Taniguchi, Kouichi Takahashi, D. Ogura
{"title":"Investigation into the hygrothermal behavior of fired clay materials during the freezing of supercooled water using experiments and numerical simulations","authors":"Kazuma Fukui, C. Iba, M. Taniguchi, Kouichi Takahashi, D. Ogura","doi":"10.1177/17442591211041144","DOIUrl":"https://doi.org/10.1177/17442591211041144","url":null,"abstract":"In this study, supercooling effects on the hygrothermal behavior of fired clay materials under various experimental conditions, such as water content, cooling rates, and size of specimens were investigated using experimental methods and hygrothermal simulations. We report results of the differential scanning calorimetry (DSC) and temperature distribution changes during a freeze–thaw (FT) experiment using unsaturated specimens. Also, we developed a numerical model of the freezing and thawing processes including the supercooling processes. The DSC results show the freezing of the supercooled water in a fired clay material is considerably faster than that in cement-based materials. It was also found that the dependency of the supercooling effects on the cooling rates seemed to be small. When the water saturation of a material decreases, the rate of the ice saturation increase during the freezing of the supercooled water is decreased while the freezing points of the supercooled water was not changed considerably. The comparison of the results of the FT experiment and hygrothermal simulations show that the combination of the existed hygrothermal model and a modified kinetic equation can reproduce the rapid temperature rise during the freezing of the supercooling water in the FT experiment. Finally, the size effects of specimens on the supercooling phenomenon was discussed based on the experimental and calculation results. The freezing points got higher when a specimen was larger. Due to differences in the ratio of the surface area to the volume, hygrothermal behavior in small specimens and relatively large specimens like that of the DSC and the FT experiment, respectively were markedly different. Water in a relatively large specimen with a small ratio of surface area to volume can achieve the thermodynamic equilibrium in a short period after the freezing starts.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81578764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Adaptive opaque façades and their potential to reduce thermal energy use in residential buildings: A simulation-based evaluation 自适应不透明外墙及其在住宅建筑中减少热能使用的潜力:基于模拟的评估
IF 2 4区 工程技术
Journal of Building Physics Pub Date : 2021-09-27 DOI: 10.1177/17442591211045418
M. Juaristi, F. Favoino, T. Gómez-Acebo, Aurora Monge-Barrio
{"title":"Adaptive opaque façades and their potential to reduce thermal energy use in residential buildings: A simulation-based evaluation","authors":"M. Juaristi, F. Favoino, T. Gómez-Acebo, Aurora Monge-Barrio","doi":"10.1177/17442591211045418","DOIUrl":"https://doi.org/10.1177/17442591211045418","url":null,"abstract":"Adaptive façades are a promising choice to achieve comfortable low-energy buildings. Their effective performance is highly dependent on the local boundary conditions of each application and on the way the dynamic properties are controlled. The evaluation of whole building performance through building performance simulation can be useful to understand the potential of different Adaptive opaque façades (AOF) in a specific context. This paper evaluates through dynamic simulations promising design solutions of AOF for a residential building use in six different climates. It quantifies the total delivered thermal energy of 15 typologies of AOFs which consist of alternative adaptation strategies: (i) variation of solar absorptance of the cladding, (ii) variation of the convective heat transfer of air cavities and (iii) adaptive insulation strategies. For the first time, it also quantifies the performance of AOF which combine more than one adaptation strategy. The results show that the variation of the heat transfer by means of Adaptive Insulation components has the most significant impact on the reduction of the thermal energy use. The variation of the solar absorptance has also a significant positive impact when reducing heating consumption, but only if this adaptation strategy is actively controlled and combined with Adaptive Insulation components.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77278443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Experimental comparison of summer thermal performance of green roof (GR), double skin roof (DSR) and cool roof (CR) in lightweight rooms in subtropical climate 亚热带气候下轻型房间绿色屋顶(GR)、双层屋面(DSR)和冷屋面(CR)夏季热性能的试验比较
IF 2 4区 工程技术
Journal of Building Physics Pub Date : 2021-09-19 DOI: 10.1177/17442591211040545
Erlin Meng, Jiawang Yang, Ruonan Cai, Bo Zhou, Junqi Wang
{"title":"Experimental comparison of summer thermal performance of green roof (GR), double skin roof (DSR) and cool roof (CR) in lightweight rooms in subtropical climate","authors":"Erlin Meng, Jiawang Yang, Ruonan Cai, Bo Zhou, Junqi Wang","doi":"10.1177/17442591211040545","DOIUrl":"https://doi.org/10.1177/17442591211040545","url":null,"abstract":"Subtropical climate is characterized by high solar altitude angle in summer which causes the roof get more heat through solar radiation. GR, DSR, and CR all can decrease solar radiation heat gain of the roof. However, few researches have been done to the comparison of the thermal performance of these three roofs, especially in subtropical climate. In this study, four rooms were built separately with GR, DSR, CR, and ordinary roof (OR). The experiment was done from July 23 to August 4. Results showed that stabilities of the indoor air temperature of the four rooms were: DSR room > GR room > CR room > OR room. The GR, CR, and DSR can reduce the external surface temperature by 13.7°C, 12.0°C, and 4.8°C during the day while bring a temperature rise of 2.3°C, 1.9°C, and 0.9°C at night. Correlation analysis results showed that the internal surface heat flux of GR and DSR were negative correlated with weather factors while internal surface heat flux of OR and CR were positive correlated with weather factors. This study can give support to the selection between GR, DSR, and CR.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74209681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Temperature dependency of the long-term thermal conductivity of spray polyurethane foam 喷涂聚氨酯泡沫长期导热系数的温度依赖性
IF 2 4区 工程技术
Journal of Building Physics Pub Date : 2021-09-15 DOI: 10.1177/17442591211045415
N. Holcroft
{"title":"Temperature dependency of the long-term thermal conductivity of spray polyurethane foam","authors":"N. Holcroft","doi":"10.1177/17442591211045415","DOIUrl":"https://doi.org/10.1177/17442591211045415","url":null,"abstract":"The thermal properties of closed-cell foam insulation display a more complex behaviour than other construction materials due to the properties of the blowing agent captured in their cellular structure. Over time, blowing agent diffuses out from and air into the cellular structure resulting in an increase in thermal conductivity, a process that is temperature dependent. Some blowing agents also condense at temperatures within the in-service range of the insulation, resulting in non-linear temperature dependent relationships. Moreover, diffusion of moisture into the cellular structure increases thermal conductivity. Standards exist to quantify the effect of gas diffusion on thermal conductivity, however only at standard laboratory conditions. In this paper a new test procedure is described that includes calculation methods to determine Temperature Dependent Long-Term Thermal Conductivity (LTTC(T)) functions for closed-cell foam insulation using as a test material, a Medium-Density Spray Polyurethane Foam (MDSPF). Tests results are provided to show the validity of the method and to investigate the effects of both conditioning and mean test temperature on change in thermal conductivity. In addition, testing was conducted to produce a moisture dependent thermal conductivity function. The resulting functions were used in hygrothermal simulations to assess the effect of foam aging, in-service temperature and moisture content on the performance of a typical wall assembly incorporating MDSPF located in four Canadian climate zones. Results show that after 1 year, mean thermal conductivity increased 15%–16% and after 5 years 23%–24%, depending on climate zone. Furthermore, the use of the LTTC(T) function to calculate the wall assembly U-value improved accuracy between 3% and 5%.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80400122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evaluation of methods for prediction of evaporation from water pools 水池蒸发预报方法的评价
IF 2 4区 工程技术
Journal of Building Physics Pub Date : 2021-07-26 DOI: 10.1177/17442591211034193
M. Shah
{"title":"Evaluation of methods for prediction of evaporation from water pools","authors":"M. Shah","doi":"10.1177/17442591211034193","DOIUrl":"https://doi.org/10.1177/17442591211034193","url":null,"abstract":"Calculation of evaporation is needed in many applications including swimming pools, water reservoirs, nuclear fuel pools, pools for rejection of heat from refrigeration systems, process tanks, etc. Hence accurate methods for prediction of evaporation are needed. Many prediction methods have been published including analytical models and empirical correlations. In the present study, 18 published prediction methods are compared to a very wide-ranging database which includes data from laboratory scale studies, swimming pools, and fuel pools in nuclear power plants. The data are from 25 sources. The range of data includes air temperatures from 6°C to 200°C, water temperatures from 7.1°C to 94.2°C, relative humidity from 0.21% to 98%, and air velocity from 0 to 8.5 m/s. The accuracy of prediction methods is examined for conditions in which natural convection dominates, that in which forced convection dominates, and that in which natural convection is absent. The results are reported and discussed. Recommendations are made for application.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90855133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Smart wetting of permeable pavements as an evaporative-cooling measure for improving the urban climate during heat waves 可渗透路面的智能润湿作为一种蒸发冷却措施,在热浪期间改善城市气候
IF 2 4区 工程技术
Journal of Building Physics Pub Date : 2021-07-01 DOI: 10.1177/1744259120968586
A. Kubilay, A. Ferrari, D. Derome, J. Carmeliet
{"title":"Smart wetting of permeable pavements as an evaporative-cooling measure for improving the urban climate during heat waves","authors":"A. Kubilay, A. Ferrari, D. Derome, J. Carmeliet","doi":"10.1177/1744259120968586","DOIUrl":"https://doi.org/10.1177/1744259120968586","url":null,"abstract":"An urban microclimate model is used to design a smart wetting protocol for multilayer street pavements in order to maximize the evaporative cooling effect as a mitigation measure for thermal discomfort during heat waves. The microclimate model is built upon a computational fluid dynamics (CFD) model for solving the turbulent air, heat and moisture flow in the air domain of a street canyon. The CFD model is coupled to a model for heat and moisture transport in porous urban materials and to a radiative exchange model, determining the net solar and thermal radiation on each urban surface. A two-layer pavement system, previously optimized for maximal evaporative cooling applying the principles of capillary pumping and capillary break, is considered to design a smart wetting protocol answering the questions “when,” “how much,” and “how long” a pavement should be artificially wetted. It was found for the current optimized pavement solutions that a daily amount of 6 mm wetting over 10 min in the morning, preferentially between 8:00 and 10:00, guarantees a maximal evaporative cooling for 24 h during a heat wave.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79756799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信