Batteries最新文献

筛选
英文 中文
Bubble Wrap-like Carbon-Coated Rattle-Type silica@silicon Nanoparticles as Hybrid Anode Materials for Lithium-Ion Batteries via Surface-Protected Etching 通过表面保护蚀刻技术将泡泡纱状碳包覆的 "拨浪鼓 "型二氧化硅@硅纳米粒子用作锂离子电池的混合负极材料
Batteries Pub Date : 2024-02-01 DOI: 10.3390/batteries10020053
Angelica Martino, Jiyun Jeon, Hyun-Ho Park, Hochun Lee, Chang-Seop Lee
{"title":"Bubble Wrap-like Carbon-Coated Rattle-Type silica@silicon Nanoparticles as Hybrid Anode Materials for Lithium-Ion Batteries via Surface-Protected Etching","authors":"Angelica Martino, Jiyun Jeon, Hyun-Ho Park, Hochun Lee, Chang-Seop Lee","doi":"10.3390/batteries10020053","DOIUrl":"https://doi.org/10.3390/batteries10020053","url":null,"abstract":"Severe volumetric expansion (~400%) limits practical application of silicon nanoparticles as anode materials for next-generation lithium-ion batteries (LIBs). Here, we describe the fabrication and characterization of a conformal polydopamine carbon shell encapsulating rattle-type silica@silicon nanoparticles (PDA–PEI@PVP–SiO2@Si) with a tunable void structure using a dual template strategy with TEOS and (3-aminopropyl)triethoxysilane (APTES) pretreated with polyvinylpyrrolidone (PVP K30) as SiO2 sacrificial template via a modified Stöber process. Polyethylene imine (PEI) crosslinking facilitated the construction of an interconnected three-dimensional bubble wrap-like carbon matrix structure through hydrothermal treatment, pyrolysis, and subsequent surface-protected etching. The composite anode material delivered satisfactory capacities of 539 mAh g−1 after 100 cycles at 0.1 A g−1, 512.76 mAh g−1 after 200 cycles at 1 A g−1, and 453 mAh g−1 rate performance at 5 A g−1, respectively. The electrochemical performance of PDA–PEI@PVP–SiO2@Si was attributed to the rattle-type structure providing void space for Si volume expansion, PVP K30-pretreated APTES/TEOS SiO2 seeds via catalyst-free, hydrothermal-assisted Stöber protecting Si/C spheres upon etching, carbon coating strategy increasing Si conductivity while stabilizing the solid electrolyte interface (SEI), and PEI carbon crosslinks providing continuous conductive pathways across the electrode structure. The present work describes a promising strategy to synthesize tunable yolk shell C@void@Si composite anode materials for high power/energy-density LIBs applications.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"1011 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139820450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bubble Wrap-like Carbon-Coated Rattle-Type silica@silicon Nanoparticles as Hybrid Anode Materials for Lithium-Ion Batteries via Surface-Protected Etching 通过表面保护蚀刻技术将泡泡纱状碳包覆的 "拨浪鼓 "型二氧化硅@硅纳米粒子用作锂离子电池的混合负极材料
Batteries Pub Date : 2024-02-01 DOI: 10.3390/batteries10020053
Angelica Martino, Jiyun Jeon, Hyun-Ho Park, Hochun Lee, Chang-Seop Lee
{"title":"Bubble Wrap-like Carbon-Coated Rattle-Type silica@silicon Nanoparticles as Hybrid Anode Materials for Lithium-Ion Batteries via Surface-Protected Etching","authors":"Angelica Martino, Jiyun Jeon, Hyun-Ho Park, Hochun Lee, Chang-Seop Lee","doi":"10.3390/batteries10020053","DOIUrl":"https://doi.org/10.3390/batteries10020053","url":null,"abstract":"Severe volumetric expansion (~400%) limits practical application of silicon nanoparticles as anode materials for next-generation lithium-ion batteries (LIBs). Here, we describe the fabrication and characterization of a conformal polydopamine carbon shell encapsulating rattle-type silica@silicon nanoparticles (PDA–PEI@PVP–SiO2@Si) with a tunable void structure using a dual template strategy with TEOS and (3-aminopropyl)triethoxysilane (APTES) pretreated with polyvinylpyrrolidone (PVP K30) as SiO2 sacrificial template via a modified Stöber process. Polyethylene imine (PEI) crosslinking facilitated the construction of an interconnected three-dimensional bubble wrap-like carbon matrix structure through hydrothermal treatment, pyrolysis, and subsequent surface-protected etching. The composite anode material delivered satisfactory capacities of 539 mAh g−1 after 100 cycles at 0.1 A g−1, 512.76 mAh g−1 after 200 cycles at 1 A g−1, and 453 mAh g−1 rate performance at 5 A g−1, respectively. The electrochemical performance of PDA–PEI@PVP–SiO2@Si was attributed to the rattle-type structure providing void space for Si volume expansion, PVP K30-pretreated APTES/TEOS SiO2 seeds via catalyst-free, hydrothermal-assisted Stöber protecting Si/C spheres upon etching, carbon coating strategy increasing Si conductivity while stabilizing the solid electrolyte interface (SEI), and PEI carbon crosslinks providing continuous conductive pathways across the electrode structure. The present work describes a promising strategy to synthesize tunable yolk shell C@void@Si composite anode materials for high power/energy-density LIBs applications.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"49 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139880259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Partial Cation Replacement on Anode Performance of Sodium-Ion Batteries 部分阳离子置换对钠离子电池阳极性能的影响
Batteries Pub Date : 2024-01-26 DOI: 10.3390/batteries10020044
Shijiang He, Zidong Wang, Wenbo Qiu, Huaping Zhao, Yong Lei
{"title":"Effect of Partial Cation Replacement on Anode Performance of Sodium-Ion Batteries","authors":"Shijiang He, Zidong Wang, Wenbo Qiu, Huaping Zhao, Yong Lei","doi":"10.3390/batteries10020044","DOIUrl":"https://doi.org/10.3390/batteries10020044","url":null,"abstract":"Due to their high specific capacity and long cycle life, bimetallic sulfides are the preferred choice of researchers as anodes in sodium-ion batteries (SIBs). However, studies indicate that this class of materials often requires expensive elements such as Co, Sb, Sn, etc., and their performance is insufficient with the use of inexpensive Fe, V alone. Therefore, there is a need to explore the relationship between metal cations and anode performance so that the requirements of cost reduction and performance enhancement can be met simultaneously. In this work, a series of partially replaced sulfides with different cation ratios have been prepared by a hydrothermal method followed by heat treatment. By partially replacing Co in NiCo sulfides, all samples show improved capacity and stability over the original NiCo sulfides. As a result, the metal elements have different oxidation states, which leads to a higher capacity through their synergistic effects on each other. Mn-NiCoS with 10% replacement showed satisfactory capacity (721.09 mAh g−1 at 300 mA g−1, 662.58 mAh g−1 after 20 cycles) and excellent cycle life (85.41% capacity retention after 1000 cycles at 2000 mA g−1).","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"35 50","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139595195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spherical Graphite Anodes: Influence of Particle Size Distribution and Multilayer Structuring in Lithium-Ion Battery Cells 球形石墨阳极:锂离子电池中颗粒尺寸分布和多层结构的影响
Batteries Pub Date : 2024-01-23 DOI: 10.3390/batteries10020040
Laura Gottschalk, Jannes Müller, Alexander Schoo, Ernesto Baasch, Arno Kwade
{"title":"Spherical Graphite Anodes: Influence of Particle Size Distribution and Multilayer Structuring in Lithium-Ion Battery Cells","authors":"Laura Gottschalk, Jannes Müller, Alexander Schoo, Ernesto Baasch, Arno Kwade","doi":"10.3390/batteries10020040","DOIUrl":"https://doi.org/10.3390/batteries10020040","url":null,"abstract":"Current research focuses on lithium-ion battery cells with a high energy density and efficient fast-charging capabilities. However, transport limitations, and, therefore, the uniform diffusion of lithium-ions across the electrode layers, remain a challenge and could lead to reduced cell performance. One approach to overcome these transport challenges is the use of subsequently produced two-layer anodes with the particle size variation of spherical graphite (x50 = 18 µm; x50 = 11 µm). Thereby, a defined pore network is created, which reduces the ionic resistance and ensuring improved fast charging capabilities. The analysis focuses on the evaluation of electrode properties and the electrochemical performance. By examining the pore size distribution of the anodes, it has been found that during the manufacturing of the two-layer anodes, carbon black and binder particles are transported into the existing microstructure of the lower layer, resulting in localized densification between the anode layers. This could also be supported by color measurements. This effect also extends to electrochemical investigations, with electrochemical impedance spectroscopy showing significantly lower ionic resistances in all two-layer anodes. Reduced ionic resistance and tortuosity near the separator due to absorption effects enhance the ion diffusion and have a direct impact on anode performance. Cell ageing analysis showed a significant capacity decrease of almost 15 mAh g −1 in the single-layer references only, in contrast to the stability of the two-layer anodes. This could also be attributed to the reduced ionic resistance and active counteraction of binder migration. In conclusion, this study highlights how subsequently produced two-layer anodes significantly shape the electrode properties and cell performance of lithium-ion batteries.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"109 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139605869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring of Thermal Runaway in Commercial Prismatic High-Energy Lithium-Ion Battery Cells via Internal Temperature Sensing 通过内部温度传感器监测商用棱柱形高能锂离子电池的热失控情况
Batteries Pub Date : 2024-01-23 DOI: 10.3390/batteries10020041
Niklas Kisseler, Fabian Hoheisel, C. Offermanns, Moritz H. Frieges, H. Heimes, Achim Kampker
{"title":"Monitoring of Thermal Runaway in Commercial Prismatic High-Energy Lithium-Ion Battery Cells via Internal Temperature Sensing","authors":"Niklas Kisseler, Fabian Hoheisel, C. Offermanns, Moritz H. Frieges, H. Heimes, Achim Kampker","doi":"10.3390/batteries10020041","DOIUrl":"https://doi.org/10.3390/batteries10020041","url":null,"abstract":"The temperature of a lithium-ion battery is a crucial parameter for understanding the internal processes during various operating and failure scenarios, including thermal runaway. However, the internal temperature is comparatively higher than the surface temperature. This particularly affects cells with a large cross-section, which is due to heat development within the cell and lower heat dissipation due to a poorer ratio of volume to surface area. This paper presents an approach that enables real-time monitoring of the behavior of a commercial prismatic high-energy battery cell (NMC811/C, 95 Ah, Contemporary Amperex Technology Co., Limited (Ningde, China)) in the event of thermal runaway induced by overcharging. The internal cell temperature is investigated by the subsequent integration of two hard sensors between the two jelly rolls and additional sensors on the surface of the aluminum housing of the battery cell. The sensor’s signals show a significant increase in the temperature gradient between the temperature in the core of the cell and the cell casing surface until the onset of venting and thermal runaway of the battery. The data enable a detailed investigation of the behavior of the battery cell and the comparatively earlier detection of the point of no return in the event of thermal runaway.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"126 46","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139605242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithium-Ion Supercapacitors and Batteries for Off-Grid PV Applications: Lifetime and Sizing 用于离网光伏应用的锂离子超级电容器和电池:寿命和尺寸
Batteries Pub Date : 2024-01-23 DOI: 10.3390/batteries10020042
Tarek Ibrahim, T. Kerekes, D. Sera, Abderezak Lashab, D. Stroe
{"title":"Lithium-Ion Supercapacitors and Batteries for Off-Grid PV Applications: Lifetime and Sizing","authors":"Tarek Ibrahim, T. Kerekes, D. Sera, Abderezak Lashab, D. Stroe","doi":"10.3390/batteries10020042","DOIUrl":"https://doi.org/10.3390/batteries10020042","url":null,"abstract":"The intermittent nature of power generation from photovoltaics (PV) requires reliable energy storage solutions. Using the storage system outdoors exposes it to variable temperatures, affecting both its storage capacity and lifespan. Utilizing and optimizing energy storage considering climatic variations and new storage technologies is still a research gap. Therefore, this paper presents a modified sizing algorithm based on the Golden Section Search method, aimed at optimizing the number of cells in an energy storage unit, with a specific focus on the unique conditions of Denmark. The considered energy storage solutions are Lithium-ion capacitors (LiCs) and Lithium-ion batteries (LiBs), which are tested under different temperatures and C-rates rates. The algorithm aims to maximize the number of autonomy cycles—defined as periods during which the system operates independently of the grid, marked by intervals between two consecutive 0% State of Charge (SoC) occurrences. Testing scenarios include dynamic temperature and dynamic load, constant temperature at 25 °C, and constant load, considering irradiation and temperature effects and cell capacity fading over a decade. A comparative analysis reveals that, on average, the LiC storage is sized at 70–80% of the LiB storage across various scenarios. Notably, under a constant-temperature scenario, the degradation rate accelerates, particularly for LiBs. By leveraging the modified Golden Section Search algorithm, this study provides an efficient approach to the sizing problem, optimizing the number of cells and thus offering a potential solution for energy storage in off-grid PV systems.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"8 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139602892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Energy Storage and Buffer Units for Electric Military Vehicle: Survey of Experimental Results 电动军用车辆储能和缓冲装置的比较分析:实验结果调查
Batteries Pub Date : 2024-01-23 DOI: 10.3390/batteries10020043
Ngoc Nam Pham, Radim Bloudicek, Jan Leuchter, Stanislav Rydlo, Quang Huy Dong
{"title":"Comparative Analysis of Energy Storage and Buffer Units for Electric Military Vehicle: Survey of Experimental Results","authors":"Ngoc Nam Pham, Radim Bloudicek, Jan Leuchter, Stanislav Rydlo, Quang Huy Dong","doi":"10.3390/batteries10020043","DOIUrl":"https://doi.org/10.3390/batteries10020043","url":null,"abstract":"This paper deals with the analyses of batteries used in current military systems to power the electric drives of military vehicles. The article focuses on battery analyses based on operational data obtained from measurements rather than analyses of the chemical composition of the tested batteries. The authors of the article used their experience from the development test-laboratory of military technology. This article presents a comparative analysis of existing and promising technologies in the field of energy storage and buffering for military electric vehicles. The overview of these technologies, including the design, operating principles, advantages, and disadvantages, are briefly presented to produce theoretical comparative analyses. However, this article mainly focuses on the experimental verification of operational ability in varied conditions, as well as the comparison and analysis of these results. The main part of the article provides more experimental studies on technologies of energy storage and buffering using the results of several experiments conducted to demonstrate the behavior of each technology in different working conditions. The output parameters, as well as the state of charge of each technology’s samples, were surveyed in various temperatures and loading characteristics. The results presented in this paper are expected to be useful for optimizing the selection of energy storage and buffering solutions for military electric vehicles in different applications and functional environments.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"135 51","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139604650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Dry Electrode Manufacturing for Sustainable Lithium-Ion Batteries 为可持续锂离子电池设计干电极制造工艺
Batteries Pub Date : 2024-01-22 DOI: 10.3390/batteries10010039
Mohamed Djihad Bouguern, Anil Kumar Madikere Raghunatha Reddy, Xia Li, Sixu Deng, Harriet Laryea, Karim Zaghib
{"title":"Engineering Dry Electrode Manufacturing for Sustainable Lithium-Ion Batteries","authors":"Mohamed Djihad Bouguern, Anil Kumar Madikere Raghunatha Reddy, Xia Li, Sixu Deng, Harriet Laryea, Karim Zaghib","doi":"10.3390/batteries10010039","DOIUrl":"https://doi.org/10.3390/batteries10010039","url":null,"abstract":"The pursuit of industrializing lithium-ion batteries (LIBs) with exceptional energy density and top-tier safety features presents a substantial growth opportunity. The demand for energy storage is steadily rising, driven primarily by the growth in electric vehicles and the need for stationary energy storage systems. However, the manufacturing process of LIBs, which is crucial for these applications, still faces significant challenges in terms of both financial and environmental impacts. Our review paper comprehensively examines the dry battery electrode technology used in LIBs, which implies the use of no solvents to produce dry electrodes or coatings. In contrast, the conventional wet electrode technique includes processes for solvent recovery/drying and the mixing of solvents like N-methyl pyrrolidine (NMP). Methods that use dry films bypass the need for solvent blending and solvent evaporation processes. The advantages of dry processes include a shorter production time, reduced energy consumption, and lower equipment investment. This is because no solvent mixing or drying is required, making the production process much faster and, thus, decreasing the price. This review explores three solvent-free dry film techniques, such as extrusion, binder fibrillation, and dry spraying deposition, applied to LIB electrode coatings. Emphasizing cost-effective large-scale production, the critical methods identified are hot melting, extrusion, and binder fibrillation. This review provides a comprehensive examination of the solvent-free dry-film-making methods, detailing the underlying principles, procedures, and relevant parameters.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"43 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139608439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues 锂离子电池回收回顾:技术、可持续性和未决问题
Batteries Pub Date : 2024-01-22 DOI: 10.3390/batteries10010038
A. Zanoletti, Eleonora Carena, Chiara Ferrara, Elza Bontempi
{"title":"A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues","authors":"A. Zanoletti, Eleonora Carena, Chiara Ferrara, Elza Bontempi","doi":"10.3390/batteries10010038","DOIUrl":"https://doi.org/10.3390/batteries10010038","url":null,"abstract":"Lithium-ion batteries (LIBs) are a widely used energy storage technology as they possess high energy density and are characterized by the reversible intercalation/deintercalation of Li ions between electrodes. The rapid development of LIBs has led to increased production efficiency and lower costs for manufacturers, resulting in a growing demand for batteries and their application across various industries, particularly in different types of vehicles. In order to meet the demand for LIBs while minimizing climate-impacting emissions, the reuse, recycling, and repurposing of LIBs is a critical step toward achieving a sustainable battery economy. This paper provides a comprehensive review of lithium-ion battery recycling, covering topics such as current recycling technologies, technological advancements, policy gaps, design strategies, funding for pilot projects, and a comprehensive strategy for battery recycling. Additionally, this paper emphasizes the challenges associated with developing LIB recycling and the opportunities arising from these challenges, such as the potential for innovation and the creation of a more sustainable and circular economy. The environmental implications of LIB recycling are also evaluated with methodologies able to provide a sustainability analysis of the selected technology. This paper aims to enhance the comprehension of these trade-offs and encourage discussion on determining the “best” recycling route when targets are in conflict.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"31 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139609010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pretreatment of Lithium Ion Batteries for Safe Recycling with High-Temperature Discharging Approach 采用高温放电法预处理锂离子电池以实现安全回收
Batteries Pub Date : 2024-01-21 DOI: 10.3390/batteries10010037
Arpita Mondal, Yuhong Fu, Wei Gao, C. Mi
{"title":"Pretreatment of Lithium Ion Batteries for Safe Recycling with High-Temperature Discharging Approach","authors":"Arpita Mondal, Yuhong Fu, Wei Gao, C. Mi","doi":"10.3390/batteries10010037","DOIUrl":"https://doi.org/10.3390/batteries10010037","url":null,"abstract":"The ongoing transition toward electric vehicles is a major factor in the exponential rise in demand for lithium-ion batteries (LIBs). There is a significant effort to recycle battery materials to support the mining industry in ensuring enough raw materials and avoiding supply disruptions, so that there will be enough raw materials to produce LIBs. Nevertheless, LIBs that have reached the end of their useful lives and are sent for recycling may still have some energy left in them, which could be dangerous during handling and processing. Therefore, it is important to conduct discharge pretreatment of LIBs before dismantling and crushing them, especially in cases where pyrometallurgical recycling is not used. Electrochemical discharge in conducting solutions has been commonly studied and implemented for this purpose, but its effectiveness has yet to be fully validated. Non-electrochemical discharge has also been researched as a potentially cleaner and more efficient discharge technology at the same time. This article presents a non-electrochemical discharge process by completely draining the energy from used batteries before recycling. A comprehensive investigation of the behavior of LIBs during discharge and the amount of energy remaining after fully discharging the battery at different temperatures is analyzed in this work. According to the experimental findings, completely discharging the battery at higher temperatures results in a reduced amount of residual energy in the battery. This outcome holds great importance in terms of safe and environmentally friendly recycling of used LIBs, emphasizing that safety and environmentally friendly recycling must go hand in hand with a cost-effective and sustainable solution.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139610150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信