Batteries最新文献

筛选
英文 中文
EIS Ageing Prediction of Lithium-Ion Batteries Depending on Charge Rates 根据充电速率对锂离子电池进行 EIS 老化预测
Batteries Pub Date : 2024-07-11 DOI: 10.3390/batteries10070247
Olivia Bruj, A. Calborean
{"title":"EIS Ageing Prediction of Lithium-Ion Batteries Depending on Charge Rates","authors":"Olivia Bruj, A. Calborean","doi":"10.3390/batteries10070247","DOIUrl":"https://doi.org/10.3390/batteries10070247","url":null,"abstract":"In the automotive industry, ageing mechanisms and diagnosis of Li-ion batteries depending on charge rate are of tremendous importance. With this in mind, we have investigated the lifetime degradation of lithium-ion battery cells at three distinct charging rates using Electrochemical Impedance Spectroscopy (EIS). Impedance spectra of high-energy Panasonic NCR18650B batteries have been analysed in light of two distinct approaches, namely the time-dependent evaluation of the Constant Phase Element (CPE), and the single parameter investigation of resonance frequency of the circuit. SOH percentages were used to validate our approach. By monitoring the CPE-Q parameter at different charge rates of 0.5 C, 1 C, and 1.5 C, respectively, we applied a degradation speed analysis, allowing us to predict a quantitative value of the LIBs. The results are in complete agreement with the resonance frequency single parameter analysis, in which quite a similar trend was obtained after the spline fitting.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"28 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141658694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Cu2O/CuO Nanowires by One-Step Thermal Oxidation of Flexible Copper Mesh for Supercapacitor Applications 通过一步热氧化柔性铜网制备用于超级电容器的 Cu2O/CuO 纳米线
Batteries Pub Date : 2024-07-10 DOI: 10.3390/batteries10070246
Mina-Ionela Morariu (Popescu), M. Nicolaescu, I. Hulka, N. Duțeanu, Corina Orha, C. Lăzău, Cornelia Bandas
{"title":"Fabrication of Cu2O/CuO Nanowires by One-Step Thermal Oxidation of Flexible Copper Mesh for Supercapacitor Applications","authors":"Mina-Ionela Morariu (Popescu), M. Nicolaescu, I. Hulka, N. Duțeanu, Corina Orha, C. Lăzău, Cornelia Bandas","doi":"10.3390/batteries10070246","DOIUrl":"https://doi.org/10.3390/batteries10070246","url":null,"abstract":"This study focuses on the growth of Cu2O/CuO nanowires by one-step thermal oxidation using a flexible copper mesh at oxidation temperatures in the range of 300 to 600 °C in a controlled atmosphere of mixed-flow Ar and O2 gases. Thermal oxidation is one of the simplest used methods to obtain nanowires on a metal surface, offering advantages such as low production costs and the ability to produce metal oxides on a large scale without the use of hazardous chemical compounds. The growth of metal oxides on a conductive substrate, forming metal/oxide structures, has proven to be an effective method for enhancing charge-transfer efficiency. The as-synthesized Cu/Cu2O/CuO (Nw) electrodes were structurally and morphologically characterized using techniques such as XRD and SEM/EDX analysis to investigate the structure modification and morphologies of the materials. The supercapacitor properties of the as-developed Cu/Cu2O/CuO (Nw) electrodes were then examined using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) measurements, and electrochemical impedance spectroscopy (EIS). The CV curves show that the Cu/Cu2O/CuO (Nw) structure acts as a positive electrode, and, at a scan rate of 5 mV s −1, the highest capacitance values reached 26.158 mF cm−2 for the electrode oxidized at a temperature of 300 °C. The assessment of the flexibility of the electrodes was performed at various bending angles, including 0°, 45°, 90°, 135°, and 180°. The GCD analysis revealed a maximum specific capacitance of 21.198 mF cm−2 at a low power density of 0.5 mA cm−2 for the oxidation temperature of 300 °C. The cycle life assessment of the all of the as-obtained Cu/Cu2O/CuO (Nw) electrodes over 500 cycles was performed by GCD analysis, which confirmed their electrochemical stability.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"53 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141659941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validity of LiPON Conductivity Determined by Impedance Spectroscopy 用阻抗光谱仪测定 LiPON 电导率的有效性
Batteries Pub Date : 2024-07-09 DOI: 10.3390/batteries10070245
Alexander Rudy, Alena Novozhilova, Julia Egorova
{"title":"Validity of LiPON Conductivity Determined by Impedance Spectroscopy","authors":"Alexander Rudy, Alena Novozhilova, Julia Egorova","doi":"10.3390/batteries10070245","DOIUrl":"https://doi.org/10.3390/batteries10070245","url":null,"abstract":"A hypothesis that the generally accepted value of the LiPON conductivity should be attributed to the absorption and displacement currents is substantiated. The reason is a small contribution of the drift current due to field screening by the electric double layer. The basis for this assumption is the measurement of the LiPON absorption capacitance, according to which its dielectric constant is about 106. An alternative equivalent circuit containing a non-ideal absorption element is proposed and its impedance is calculated. It is shown that the Bode diagrams of the alternative circuit approximate the experimental curves well. Parameters and the magnitude of electric field screening are calculated based on a proposed model of a double electric layer. Considering the screening effect, the drift conductivity of LiPON is obtained, which is in good agreement with the data on lithium concentration and ion mobility.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"19 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141664999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Printed Pouch Film and Flexible Battery 开发印刷袋薄膜和柔性电池
Batteries Pub Date : 2024-07-08 DOI: 10.3390/batteries10070244
Gyeongseok Oh, S. P. Mantry, Jae-Ho Sim, Hyeon Woo Cho, Mijin Won, Hwamok Park, Jiyoung Park, Juhwan Lee, Dong Soo Kim
{"title":"Development of Printed Pouch Film and Flexible Battery","authors":"Gyeongseok Oh, S. P. Mantry, Jae-Ho Sim, Hyeon Woo Cho, Mijin Won, Hwamok Park, Jiyoung Park, Juhwan Lee, Dong Soo Kim","doi":"10.3390/batteries10070244","DOIUrl":"https://doi.org/10.3390/batteries10070244","url":null,"abstract":"This study investigates the properties of various adhesives and assesses the effects of the coating and drying conditions of aluminum surface treatment agents on adhesion strength and chemical resistance. The adhesion between aluminum and the polymer film is improved through the application of a surface treatment agent to the aluminum surface. This study examines the initial adhesive strength of a manufactured pouch film with respect to the drying temperature and time and evaluates its adhesive strength in the presence of moisture. The results indicate that the residual moisture on the aluminum surface weakens the adhesive strength and significantly affects electrolyte resistance. A noticeable reduction in strength was observed after water spraying, when the drying temperature and time were relatively low during the initial strength measurement. Among the adhesives used for aluminum and CPP lamination, olefin adhesives exhibit less susceptibility to electrolyte effects and have higher adhesive strengths compared to urethane and ester adhesives. Leveraging these characteristics, flexible pouch cells were manufactured and their stability was evaluated. The results confirm that the flexible cells demonstrate excellent stability, exhibiting potential for application in wearable devices.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":" 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141670014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation on Thermal Runaway of Lithium-Ion Batteries under Low Pressure and Low Temperature 低压低温条件下锂离子电池热失控的实验研究
Batteries Pub Date : 2024-07-06 DOI: 10.3390/batteries10070243
Di Meng, Jingwen Weng, Jian Wang
{"title":"Experimental Investigation on Thermal Runaway of Lithium-Ion Batteries under Low Pressure and Low Temperature","authors":"Di Meng, Jingwen Weng, Jian Wang","doi":"10.3390/batteries10070243","DOIUrl":"https://doi.org/10.3390/batteries10070243","url":null,"abstract":"Understanding the thermal runaway mechanism of lithium-ion batteries under low pressure and low temperature is paramount for their application and transportation in the aviation industry. This work investigated the coupling effects of ambient pressure (100 kPa, 70 kPa, 40 kPa) and ambient temperature (−15 °C, 0 °C, 25 °C) on thermal behaviors in an altitude temperature chamber. The experimental results indicate that lowering ambient pressure and temperature could attenuate the thermal runaway intensity, which is mainly attributable to the reduction in oxygen concentration and the increase in heat loss. Such a dual effect leads to the maximum temperature decreasing from 811.9 °C to 667.5 °C, and the maximum temperature rate declines up to 2.6 times. Correspondingly, the whole thermal runaway process is deferred, the total time increases from 370 s to 503 s, and the time interval, Δt, from safety venting gains by 32.3% as the ambient pressure and temperature decrease. This work delivers an in-depth understanding of the thermal characteristics under low pressure and low temperature and provides meritorious guidance for the safety of cell transportation in aviation.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":" 32","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141672931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Digital Twin-Enhanced Control for Fuel Cell and Lithium-Ion Battery Hybrid Vehicles 用于燃料电池和锂离子电池混合动力汽车的数字双增强控制装置
Batteries Pub Date : 2024-07-05 DOI: 10.3390/batteries10070242
Xu Kang, Yujie Wang, Cong Jiang, Zonghai Chen
{"title":"Digital Twin-Enhanced Control for Fuel Cell and Lithium-Ion Battery Hybrid Vehicles","authors":"Xu Kang, Yujie Wang, Cong Jiang, Zonghai Chen","doi":"10.3390/batteries10070242","DOIUrl":"https://doi.org/10.3390/batteries10070242","url":null,"abstract":"With the development of lithium-ion batteries and fuel cells, the application of hybrid power systems is becoming more and more widespread. To better optimize the energy management problem of fuel cell hybrid systems, the accuracy of system modeling and simulation is very important. The hybrid system is formed by connecting the battery to the fuel cell through an active topology. Digital twin technology is applicable to the mapping of physical entities to each other with high interactivity and fast optimization iterations. In this paper, a relevant model based on mathematical logic is established by collecting actual operational data; subsequently, the accuracy of the model is verified by combining relevant operating conditions and simulating the model. Subsequently, a three-dimensional visualization model of a hybrid power system-based sightseeing vehicle and its operating environment was established using digital twin technology to improve the model simulation of the fuel cell hybrid power system. At low speeds, the simulation results of the hybrid power system-based sightseeing vehicle have a small error compared with the actual running state, and the accuracy of the data related to each internal subcomponent is high. In the simple interaction between the model display vehicle and the environment, the communication state can meet the basic requirements of the digital twin model because the amount of data to be transferred is small. This study makes a preliminary attempt at digital parallelism by combining mathematical logic with visualization models and can be used as a basis for the subsequent development of more mature digital twin models.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":" 39","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141675843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation of Thermal Runaway Characteristics of Large-Format Li(Ni0.8Co0.1Mn0.1)O2 Battery under Different Heating Powers and Areas 不同加热功率和面积下大规格锂(Ni0.8Co0.1Mn0.1)O2 电池热失控特性的实验研究
Batteries Pub Date : 2024-07-04 DOI: 10.3390/batteries10070241
Jingru Huang, Zhuwei Fan, Chengshan Xu, Fachao Jiang, Xuning Feng
{"title":"Experimental Investigation of Thermal Runaway Characteristics of Large-Format Li(Ni0.8Co0.1Mn0.1)O2 Battery under Different Heating Powers and Areas","authors":"Jingru Huang, Zhuwei Fan, Chengshan Xu, Fachao Jiang, Xuning Feng","doi":"10.3390/batteries10070241","DOIUrl":"https://doi.org/10.3390/batteries10070241","url":null,"abstract":"This study experimentally investigates the effects of different heating powers and areas on the jet behavior and thermal runaway (TR) of 75 Ah LiNi0.8Co0.1Mn0.1O2 pouch lithium-ion batteries (LIBs) in an open environment. TR, a critical safety concern for LIBs, can occur under overheating conditions. The TR behavior of LIBs was characterized by flame behavior, temperature characteristics, mass variation, jet dynamics, and residue formations. The results reveal that the heating power density primarily influences the time to initiate TR. Lower power densities extend the heating time and require higher energy to induce TR, thereby exerting a more considerable impact on the battery. The heating area predominantly affects the input energy and the extent of damage. Larger areas lead to more stable jet flames, consistent peak temperatures ranging between 1000 °C and 1300 °C, and mass loss ratios ranging from 44% to 53% compared to 43% to 47% for small-area heaters. These findings provide references for the safety design of battery assemblies and the prevention of TR propagation, contributing to the safer monitoring of LIBs.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":" 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141679762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainability Development of Stationary Batteries: A Circular Economy Approach for Vanadium Flow Batteries 固定电池的可持续性发展:钒液流电池的循环经济方法
Batteries Pub Date : 2024-07-03 DOI: 10.3390/batteries10070240
Nick Blume, Thomas Turek, C. Minke
{"title":"Sustainability Development of Stationary Batteries: A Circular Economy Approach for Vanadium Flow Batteries","authors":"Nick Blume, Thomas Turek, C. Minke","doi":"10.3390/batteries10070240","DOIUrl":"https://doi.org/10.3390/batteries10070240","url":null,"abstract":"In the literature, the hierarchy of value retention strategies (R-strategies) is utilized to describe the impacts on various circular economy (CE) factors. However, this approach is not suitable for batteries, such as the vanadium flow battery (VFB), due to its technical complexity. The presented model primarily focuses on VFBs, as a deep technical understanding is identified as a fundamental prerequisite for a comprehensive CE analysis. Based on the R-strategies, a new model called the dynamic multi-dimensional value retention strategy model (DDS) is developed accordingly. The DDS divides the R-strategies into three dimensions, as changes in the studied object each have a unilateral influence on the underlying dimensions. In addition, interactions among the R-strategies within the dimensions are observed. Moreover, the model enables the transparent and comprehensible examination of various CE objective factors. Through the model, future adjustments to CE for batteries can be analyzed and quantified. In particular, the analysis yields new insights into individual end-of-life (EoL) strategies, based on new findings regarding the VFB. Consequently, important new perspectives on the VFB are also illuminated. The DDS model is applicable to other complex technologies as well as simple product systems.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"86 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141683557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion-Equation-Based Electrical Modeling for High-Power Lithium Titanium Oxide Batteries 基于扩散方程的大功率钛氧化锂电池电学建模
Batteries Pub Date : 2024-07-03 DOI: 10.3390/batteries10070238
Haoze Chen, Weige Zhang, Caiping Zhang, Bingxiang Sun, Sijia Yang, Dinghong Chen
{"title":"Diffusion-Equation-Based Electrical Modeling for High-Power Lithium Titanium Oxide Batteries","authors":"Haoze Chen, Weige Zhang, Caiping Zhang, Bingxiang Sun, Sijia Yang, Dinghong Chen","doi":"10.3390/batteries10070238","DOIUrl":"https://doi.org/10.3390/batteries10070238","url":null,"abstract":"Lithium titanium oxide (LTO) batteries offer superior performance compared to graphite-based anodes in terms of rapid charge/discharge capability and chemical stability, making them promising candidates for fast-charging and power-assist vehicle applications. However, commonly used battery models often struggle to accurately describe the current–voltage characteristics of LTO batteries, particularly before the charge/discharge cutoff conditions. In this work, a novel electrical model based on the solid-phase diffusion equation is proposed to capture the unique electrochemical phenomena arising from the diffusion mismatch between the positive and negative electrodes in high-power LTO batteries. The robustness of the proposed model is evaluated under various loading conditions, including constant current and dynamic current tests, and the results are compared against experimental data. The experimental results for LTO batteries exhibit remarkable alignment with the model estimation, demonstrating a maximum voltage error below 3%.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"99 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141682888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active Methods for the Equalization of a Serially Connected Lithium-Ion Battery Pack: A Review 用于串联锂离子电池组均衡的有源方法:综述
Batteries Pub Date : 2024-07-03 DOI: 10.3390/batteries10070239
Longsheng Yuan, Tuo Ji, Lijun Zhang
{"title":"Active Methods for the Equalization of a Serially Connected Lithium-Ion Battery Pack: A Review","authors":"Longsheng Yuan, Tuo Ji, Lijun Zhang","doi":"10.3390/batteries10070239","DOIUrl":"https://doi.org/10.3390/batteries10070239","url":null,"abstract":"Traditional fuel vehicles are currently still the main means of transportation when people travel. It brings convenience to their travels, but it also causes energy shortages and environmental pollution. With the development of science and technology and the popularization of green environmental protection, electric vehicles have gradually entered people’s lives, greatly alleviating these problems. As a power supply device for electric vehicles, the performance of batteries directly affects various indicators of vehicles. Due to their long lifespan and high energy density, lithium-ion batteries are now the preferred source of power for electric vehicles. However, due to various factors in the manufacturing and operation of lithium-ion batteries, there are often differences among individual cells. The power balance and performance of a battery pack are closely related. Thus, battery equalization is an important standard for a battery management system to work normally, and it is also one of the various battery management application problems. This paper reviews battery equalization systems and various active equalization circuits and summarizes the working principle and research progress of each active equalization circuit. Then, various active equalization circuits are analyzed and compared, and dynamic equalization for a second-life battery is introduced to enrich this review of equalization technology. Finally, the above contents are summarized and prospected. In order to obtain the best outcomes, different equalization circuits need to be chosen for various situations.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141682148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信