Eva-Maria C. Hols , Stefan Kratsch, Astrid Pieterse
{"title":"Approximate Turing kernelization for problems parameterized by treewidth","authors":"Eva-Maria C. Hols , Stefan Kratsch, Astrid Pieterse","doi":"10.1016/j.jcss.2025.103720","DOIUrl":"10.1016/j.jcss.2025.103720","url":null,"abstract":"<div><div>We extend the notion of lossy kernelization, introduced by Lokshtanov et al. (2017) <span><span>[19]</span></span>, to approximate Turing kernelization. An <em>α</em>-approximate Turing kernelization for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs <em>c</em>-approximate solutions in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> time, computes an <span><math><mi>α</mi><mo>⋅</mo><mi>c</mi></math></span>-approximate solution to the considered problem, using calls to the oracle of size at most <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> for some function <em>f</em> that only depends on the parameter. Using this definition, we show that <span>Independent Set</span> parameterized by treewidth <em>ℓ</em> has a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelization with <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></math></span> vertices, answering an open question posed by Lokshtanov et al. (2017) <span><span>[19]</span></span>. Furthermore, we give <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelizations for the following graph problems parameterized by treewidth: <span>Vertex Cover</span>, <span>Edge Clique Cover</span>, <span>Edge-Disjoint Triangle Packing</span>, and <span>Connected Vertex Cover</span>. We generalize the result for <span>Independent Set</span> and <span>Vertex Cover</span> by showing that all graph problems that we will call <em>friendly</em> admit <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelizations of polynomial size when parameterized by treewidth. We use this to establish approximate Turing kernelizations for <span>Vertex-Disjoint</span> <em>H</em><span>-packing</span> for connected graphs <em>H</em>, <span>Clique Cover</span>, <span>Feedback Vertex Set</span>, and <span>Edge Dominating Set</span>.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103720"},"PeriodicalIF":0.9,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145227409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Florian Bridoux, Aymeric Picard Marchetto, Adrien Richard
{"title":"Interaction graphs of isomorphic automata networks II: Universal dynamics","authors":"Florian Bridoux, Aymeric Picard Marchetto, Adrien Richard","doi":"10.1016/j.jcss.2025.103717","DOIUrl":"10.1016/j.jcss.2025.103717","url":null,"abstract":"<div><div>An automata network with <em>n</em> components over a finite alphabet <em>Q</em> of size <em>q</em> is a discrete dynamical system described by the successive iterations of a function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In most applications, the main parameter is the interaction graph of <em>f</em>: the digraph with vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> that contains an arc from <em>j</em> to <em>i</em> if <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> depends on input <em>j</em>. What can be said on the set <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> of the interaction graphs of the automata networks isomorphic to <em>f</em>? It seems that this simple question has never been studied. In a previous paper, we prove that the complete digraph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, with <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> arcs, is universal in that <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∈</mo><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> whenever <em>f</em> is not constant nor the identity (and <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>). In this paper, taking the opposite direction, we prove that there exist universal automata networks <em>f</em>, in that <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> contains all the digraphs on <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, excepted the empty one. Actually, we prove that the presence of only three specific digraphs in <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> implies the universality of <em>f</em>, and we prove that this forces the alphabet size <em>q</em> to have at least <em>n</em> prime factors (with multiplicity). However, we prove that for any fixed <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span>, there exists almost universal functions, that is, functions <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> such that the probability that a random digraph belongs to <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> tends to 1 as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. We do not know if this holds in the binary case <span><math><mi>q</mi><mo>=</mo><mn>2</mn></math></span>, providing only partial results.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103717"},"PeriodicalIF":0.9,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145227408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tesshu Hanaka , Hironori Kiya , Michael Lampis , Hirotaka Ono , Kanae Yoshiwatari
{"title":"Faster winner determination algorithms for (Colored) Arc Kayles","authors":"Tesshu Hanaka , Hironori Kiya , Michael Lampis , Hirotaka Ono , Kanae Yoshiwatari","doi":"10.1016/j.jcss.2025.103716","DOIUrl":"10.1016/j.jcss.2025.103716","url":null,"abstract":"<div><div><span>Arc Kayles</span> and <span>Colored Arc Kayles</span> are generalized versions of well-studied combinatorial games <span>Cram</span> and <span>Domineering</span>, respectively. In <span>Arc Kayles</span>, two players alternately choose an edge to remove with its adjacent edges, and the player who cannot move is the loser. <span>Colored Arc Kayles</span> is similarly played on a graph with edges colored in black, white, or gray, in which the black (resp., white) player can choose only a gray or black (resp., white) edge. For <span>Arc Kayles</span>, the vertex cover number <em>τ</em> (i.e., the minimum size of a vertex cover) is an essential invariant because it is known that twice the vertex cover number upper bounds the number of turns of <span>Arc Kayles</span>, and for the winner determination of <span>(Colored) Arc Kayles</span>, <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithms are known, where <em>n</em> is the number of vertices. In this paper, we first give a polynomial kernel for <span>Colored Arc Kayles</span> parameterized by <em>τ</em>, which leads to a faster <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>τ</mi><mi>log</mi><mo></mo><mi>τ</mi><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithm for <span>Colored Arc Kayles</span>. We then focus on <span>Arc Kayles</span> on trees, and propose a <span><math><msup><mrow><mn>2.2361</mn></mrow><mrow><mi>τ</mi></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithm. Furthermore, we show that determining the winner of <span>Arc Kayles</span> on a tree can be done in <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>1.3831</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> time, which improves the best-known running time of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>1.4143</mn></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. Finally, we show that <span>Colored Arc Kayles</span> is NP-hard, the first hardness result in the family of the above games.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103716"},"PeriodicalIF":0.9,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145227407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karen Frilya Celine , Ziyuan Gao , Sanjay Jain , Ryan Lou , Frank Stephan , Guohua Wu
{"title":"Quasi-isometric reductions between infinite strings","authors":"Karen Frilya Celine , Ziyuan Gao , Sanjay Jain , Ryan Lou , Frank Stephan , Guohua Wu","doi":"10.1016/j.jcss.2025.103718","DOIUrl":"10.1016/j.jcss.2025.103718","url":null,"abstract":"<div><div>This paper studies the recursion- and automata-theoretic aspects of large-scale geometries of infinite strings, a subject initiated by Khoussainov and Takisaka (2017). We first investigate several notions of quasi-isometric reductions between recursive infinite strings and prove various results on the equivalence classes of such reductions. The main result is the construction of two infinite recursive strings <em>α</em> and <em>β</em> such that <em>α</em> is strictly quasi-isometrically reducible to <em>β</em>, but the reduction cannot be made recursive. This answers an open problem posed by Khoussainov and Takisaka. Furthermore, we also study automatic quasi-isometric reductions between automatic structures, and show that automatic quasi-isometry may be separable from general quasi-isometry depending on the growth of the automatic domain.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103718"},"PeriodicalIF":0.9,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145227406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juhi Chaudhary , Harmender Gahlawat , Michal Wlodarczyk , Meirav Zehavi
{"title":"Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs","authors":"Juhi Chaudhary , Harmender Gahlawat , Michal Wlodarczyk , Meirav Zehavi","doi":"10.1016/j.jcss.2025.103715","DOIUrl":"10.1016/j.jcss.2025.103715","url":null,"abstract":"<div><div>Given an undirected graph <em>G</em> and a multiset of <em>k</em> terminal pairs <span><math><mi>X</mi></math></span>, the <span>Vertex-Disjoint Paths</span> (<figure><img></figure>) and <span>Edge-Disjoint Paths</span> (<figure><img></figure>) problems ask whether <em>G</em> has <em>k</em> pairwise internally vertex-disjoint paths and <em>k</em> pairwise edge-disjoint paths, respectively, connecting every terminal pair in <span><math><mi>X</mi></math></span>. In this paper, we study the kernelization complexity of <figure><img></figure> and <figure><img></figure> on subclasses of chordal graphs. For <figure><img></figure>, we design a 4<em>k</em> vertex kernel on split graphs and an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> vertex kernel on well-partitioned chordal graphs. We also show that the problem becomes polynomial-time solvable on threshold graphs. For <span>EDP</span>, we first prove that the problem is <span><math><mi>NP</mi></math></span>-complete on complete graphs. Then, we design an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2.75</mn></mrow></msup><mo>)</mo></math></span> vertex kernel for <figure><img></figure> on split graphs, and improve it to a <span><math><mn>7</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vertex kernel on threshold graphs. Lastly, we provide an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> vertex kernel for <figure><img></figure> on block graphs and a <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vertex kernel for clique paths. Our contributions improve upon several results in the literature, as well as resolve an open question by Heggernes et al. (2015) <span><span>[27]</span></span>.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103715"},"PeriodicalIF":0.9,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145227417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the parallel complexity of group isomorphism via Weisfeiler–Leman","authors":"Joshua A. Grochow , Michael Levet","doi":"10.1016/j.jcss.2025.103703","DOIUrl":"10.1016/j.jcss.2025.103703","url":null,"abstract":"<div><div>We leverage the Weisfeiler–Leman algorithm for groups (Brachter & Schweitzer, LICS 2020) to improve parallel complexity upper bounds on isomorphism testing for several families of groups. We first show that groups with an Abelian normal Hall subgroup whose complement is <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>-generated are identified by constant-dimensional Weisfeiler–Leman using <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>-rounds. This places isomorphism testing for this family of groups into <span><math><mtext>L</mtext></math></span>; the previous upper bound for isomorphism testing was <span><math><mi>P</mi></math></span> (Qiao, Sarma, & Tang, STACS 2011). We next use the individualize-and-refine paradigm to obtain an isomorphism test for groups without Abelian normal subgroups by <span><math><mi>SAC</mi></math></span> circuits of depth <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> and size <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></mrow></msup></math></span>, previously only known to be in <span><math><mi>P</mi></math></span> (Babai, Codenotti, & Qiao, ICALP 2012) and <span><math><msup><mrow><mi>quasiSAC</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> (Chattopadhyay, Torán, & Wagner, <em>ACM Trans. Comput. Theory</em>, 2013). We next extend a result of Brachter & Schweitzer (ESA, 2022) on direct products of groups to the parallel setting. Namely, we how that Weisfeiler–Leman can identify direct products in parallel, provided it can identify each of the indecomposable direct factors in parallel. They previously showed the analogous result for <span><math><mi>P</mi></math></span>. We finally consider the count-free Weisfeiler–Leman algorithm, where we show that count-free WL is unable to even distinguish Abelian groups in polynomial-time. Nonetheless, we use count-free WL in tandem with bounded non-determinism and limited counting to obtain a new upper bound of <span><math><msub><mrow><mi>β</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mtext>MAC</mtext></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mtext>FOLL</mtext><mo>)</mo></math></span> for isomorphism testing of Abelian groups. This improves upon the previous <span><math><msup><mrow><mtext>TC</mtext></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mtext>FOLL</mtext><mo>)</mo></math></span> upper bound due to Chattopadhyay, Torán, & Wagner (<em>ACM Trans. Comput. Theory</em>, 2013).</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103703"},"PeriodicalIF":0.9,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145049766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingyang Gong , Zhi-Zhong Chen , Guohui Lin , Lusheng Wang
{"title":"Approximately covering vertices by order-5 or longer paths","authors":"Mingyang Gong , Zhi-Zhong Chen , Guohui Lin , Lusheng Wang","doi":"10.1016/j.jcss.2025.103704","DOIUrl":"10.1016/j.jcss.2025.103704","url":null,"abstract":"<div><div>This paper studies <span><math><mi>M</mi><mi>P</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msubsup></math></span>, which is to cover as many vertices as possible in a given graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> by vertex-disjoint <span><math><msup><mrow><mn>5</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>-paths (i.e., paths each with at least five vertices). <span><math><mi>M</mi><mi>P</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msubsup></math></span> is NP-hard and admits an existing local-search-based approximation algorithm which achieves a ratio of <span><math><mfrac><mrow><mn>19</mn></mrow><mrow><mn>7</mn></mrow></mfrac><mo>≈</mo><mn>2.714</mn></math></span> and runs in <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>V</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></math></span> time. In this paper, we present a new approximation algorithm for <span><math><mi>M</mi><mi>P</mi><msubsup><mrow><mi>C</mi></mrow><mrow><mi>v</mi></mrow><mrow><mn>5</mn><mo>+</mo></mrow></msubsup></math></span> which achieves a ratio of 2.511 and runs in <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>V</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2.5</mn></mrow></msup><mo>|</mo><mi>E</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> time. Unlike the previous algorithm, the new algorithm is based on maximum matching, maximum path-cycle cover, and recursion.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103704"},"PeriodicalIF":0.9,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144997693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temporal Reachability Dominating Sets: Contagion in temporal graphs","authors":"David C. Kutner , Laura Larios-Jones","doi":"10.1016/j.jcss.2025.103701","DOIUrl":"10.1016/j.jcss.2025.103701","url":null,"abstract":"<div><div>Given a population with dynamic pairwise connections, we ask if the entire population could be (indirectly) infected by a small group of <em>k</em> initially infected individuals. We formalise this problem as the <span>Temporal Reachability Dominating Set</span> (<span>TaRDiS</span>) problem on temporal graphs. We provide positive and negative parameterized complexity results in four different parameters: the number <em>k</em> of initially infected, the lifetime <em>τ</em> of the graph, the number of locally earliest edges in the graph, and the treewidth of the footprint graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mo>↓</mo></mrow></msub></math></span>. We additionally introduce and study the <span>MaxMinTaRDiS</span> problem, where the aim is to schedule connections between individuals so that at least <em>k</em> individuals must be infected for the entire population to become fully infected. We classify three variants of the problem: Strict, Nonstrict, and Happy. We show these to be coNP-complete, NP-hard, and <span><math><msubsup><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>P</mi></mrow></msubsup></math></span>-complete, respectively. Interestingly, we obtain hardness of the Nonstrict variant by showing that a natural restriction is exactly the well-studied <span>Distance-3 Independent Set</span> problem on static graphs.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"155 ","pages":"Article 103701"},"PeriodicalIF":0.9,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144931697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Participatory budgeting with project groups","authors":"Pallavi Jain , Krzysztof Sornat , Nimrod Talmon , Meirav Zehavi","doi":"10.1016/j.jcss.2025.103702","DOIUrl":"10.1016/j.jcss.2025.103702","url":null,"abstract":"<div><div>We study a generalization of the standard approval-based model of participatory budgeting (PB), in which voters are providing approval ballots over a set of predefined projects and—in addition to a global budget limit, there are several groupings of the projects, each group with its own budget limit. We study the computational complexity of identifying project bundles that maximize voter satisfaction while respecting all budget limits. We show that the problem is generally intractable and describe efficient exact algorithms for several special cases, including instances with only few groups and instances where the group structure is close to be hierarchical, as well as efficient approximation algorithms. Our results could allow, e.g., municipalities to hold richer PB processes that are thematically and geographically inclusive.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103702"},"PeriodicalIF":0.9,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145060902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximate selection with unreliable comparisons in sublinear time","authors":"Shengyu Huang , Chih-Hung Liu , Daniel Rutschmann","doi":"10.1016/j.jcss.2025.103699","DOIUrl":"10.1016/j.jcss.2025.103699","url":null,"abstract":"<div><div>Given <em>n</em> elements, an integer <span><math><mi>k</mi><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and a parameter <span><math><mi>ε</mi><mo>≥</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span>, we study the problem of selecting an element with rank in <span><math><mo>(</mo><mi>k</mi><mo>−</mo><mi>n</mi><mi>ε</mi><mo>,</mo><mi>k</mi><mo>+</mo><mi>n</mi><mi>ε</mi><mo>]</mo></math></span> using <em>unreliable</em> comparisons where the outcome of each comparison is incorrect independently with a constant error probability, and multiple comparisons between the same pair of elements are independent. We develop a randomized algorithm that performs <em>expected</em> <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></mfrac><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>log</mi><mo></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>Q</mi></mrow></mfrac><mo>)</mo></math></span> comparisons to achieve success probability at least <span><math><mn>1</mn><mo>−</mo><mi>Q</mi></math></span>. We also prove that even in the absence of comparison faults, any randomized algorithm with success probability at least <span><math><mn>1</mn><mo>−</mo><mi>Q</mi></math></span> performs <em>expected</em> <span><math><mi>Ω</mi><mo>(</mo><mi>min</mi><mo></mo><mo>{</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></mfrac><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>log</mi><mo></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>Q</mi></mrow></mfrac><mo>}</mo><mo>)</mo></math></span> comparisons. In particular, our algorithm is optimal as long as <em>n</em> is large enough, i.e., when <span><math><mi>n</mi><mo>=</mo><mi>Ω</mi><mrow><mo>(</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></mfrac><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mi>log</mi><mo></mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>Q</mi></mrow></mfrac><mo>)</mo></mrow></math></span>; outside this parameter range, no algorithm performs a sublinear number of comparisons. Surprisingly, for constant <em>Q</em>, our algorithm performs expected <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></mfrac><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span> comparisons with and without comparison faults, while for the exact selection problem, the expected number of comparisons is <span><math><mi>Θ</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>k</mi><mo>)</mo></math></span> with faults versus <span><math><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> without faults.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"155 ","pages":"Article 103699"},"PeriodicalIF":0.9,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144886722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}