On the parameterized complexity of lineal topologies (depth-first spanning trees) with many or few leaves

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Benjamin Bergougnoux , Nello Blaser , Michael Fellows , Petr Golovach , Frances Rosamond , Emmanuel Sam
{"title":"On the parameterized complexity of lineal topologies (depth-first spanning trees) with many or few leaves","authors":"Benjamin Bergougnoux ,&nbsp;Nello Blaser ,&nbsp;Michael Fellows ,&nbsp;Petr Golovach ,&nbsp;Frances Rosamond ,&nbsp;Emmanuel Sam","doi":"10.1016/j.jcss.2025.103680","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers four problems with possible applications in network design: Given a graph <em>G</em> with <span><math><mo>|</mo><mi>G</mi><mo>|</mo><mo>=</mo><mi>n</mi></math></span> and an integer <span><math><mi>k</mi><mo>≥</mo><mn>0</mn></math></span>, does <em>G</em> have a DFS tree with (i) ≤<em>k</em> leaves, (ii) ≥<em>k</em> leaves, (iii) <span><math><mo>≤</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> leaves, and (iv) <span><math><mo>≥</mo><mi>n</mi><mo>−</mo><mi>k</mi></math></span> leaves? We show that all four problems are NP-hard. When parameterized by <em>k</em>, we prove that while (i) is para-NP-hard and (ii) is W[1]-hard, both (iii) and (iv) admit polynomial kernels with <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span> vertices, implying FPT algorithms running in <span><math><msup><mrow><mi>k</mi></mrow><mrow><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> time. Our polynomial kernels are based on a <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span>-sized vertex cover structure associated with the solution of these problems. As a byproduct, we obtain polynomial kernels for these problems parameterized by the vertex cover number of the input graph.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"154 ","pages":"Article 103680"},"PeriodicalIF":1.1000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000625","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers four problems with possible applications in network design: Given a graph G with |G|=n and an integer k0, does G have a DFS tree with (i) ≤k leaves, (ii) ≥k leaves, (iii) nk leaves, and (iv) nk leaves? We show that all four problems are NP-hard. When parameterized by k, we prove that while (i) is para-NP-hard and (ii) is W[1]-hard, both (iii) and (iv) admit polynomial kernels with O(k3) vertices, implying FPT algorithms running in kO(k)nO(1) time. Our polynomial kernels are based on a O(k)-sized vertex cover structure associated with the solution of these problems. As a byproduct, we obtain polynomial kernels for these problems parameterized by the vertex cover number of the input graph.
多叶或少叶线性拓扑(深度优先生成树)的参数化复杂度
本文考虑了网络设计中可能应用的四个问题:给定一个|G|=n且整数k≥0的图G, G是否存在(i)≤k个叶子,(ii)≥k个叶子,(iii)≤n−k个叶子,(iv)≥n−k个叶子的DFS树?我们证明这四个问题都是np困难的。当用k参数化时,我们证明了(i)是para-NP-hard, (ii)是W - [1]-hard, (iii)和(iv)都承认有O(k3)个顶点的多项式核,这意味着FPT算法在kO(k)⋅nO(1)时间内运行。我们的多项式核基于与这些问题的解相关的O(k)大小的顶点覆盖结构。作为副产品,我们得到了这些问题的多项式核,这些问题由输入图的顶点覆盖数参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信