几何图类的紧凑分布证明

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Benjamin Jauregui , Pedro Montealegre , Diego Ramirez-Romero , Ivan Rapaport
{"title":"几何图类的紧凑分布证明","authors":"Benjamin Jauregui ,&nbsp;Pedro Montealegre ,&nbsp;Diego Ramirez-Romero ,&nbsp;Ivan Rapaport","doi":"10.1016/j.jcss.2025.103661","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed proofs allow network nodes to collectively verify if the network satisfies a given predicate. The most versatile mechanism, known as a proof labeling scheme (PLS), functions as the distributed equivalent of NP, where a non-trustable prover assigns each node a certificate. Nodes exchange these certificates with their neighbors to prove the graph satisfies the predicate, with the certificate size being the primary complexity measure. Many graph properties, like planarity or bounded tree-width, can be certified with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit certificates on <em>n</em>-node graphs.</div><div>This paper presents <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> distributed certifications for recognizing geometric graph classes commonly found in distributed systems: interval graphs, chordal graphs, circular arc graphs, trapezoid graphs, and permutation graphs. It also establishes tight lower bounds on the certificate sizes required for these geometric intersection graph classes, proving that the proposed certifications are optimal.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"154 ","pages":"Article 103661"},"PeriodicalIF":1.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact distributed certification of geometric graph classes\",\"authors\":\"Benjamin Jauregui ,&nbsp;Pedro Montealegre ,&nbsp;Diego Ramirez-Romero ,&nbsp;Ivan Rapaport\",\"doi\":\"10.1016/j.jcss.2025.103661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Distributed proofs allow network nodes to collectively verify if the network satisfies a given predicate. The most versatile mechanism, known as a proof labeling scheme (PLS), functions as the distributed equivalent of NP, where a non-trustable prover assigns each node a certificate. Nodes exchange these certificates with their neighbors to prove the graph satisfies the predicate, with the certificate size being the primary complexity measure. Many graph properties, like planarity or bounded tree-width, can be certified with <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span>-bit certificates on <em>n</em>-node graphs.</div><div>This paper presents <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> distributed certifications for recognizing geometric graph classes commonly found in distributed systems: interval graphs, chordal graphs, circular arc graphs, trapezoid graphs, and permutation graphs. It also establishes tight lower bounds on the certificate sizes required for these geometric intersection graph classes, proving that the proposed certifications are optimal.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"154 \",\"pages\":\"Article 103661\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000025000431\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000431","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

分布式证明允许网络节点共同验证网络是否满足给定的谓词。最通用的机制,被称为证明标签方案(PLS),其功能相当于分布式NP,其中不可信任的证明者为每个节点分配证书。节点与其邻居交换这些证书,以证明图满足谓词,证书大小是主要的复杂性度量。许多图的性质,如平面性或有界树宽度,可以在n节点图上用O(log log n)位证书来证明。本文提出了O(log (n))分布证明,用于识别分布系统中常见的几何图类:区间图、弦图、圆弧图、梯形图和置换图。它还建立了这些几何相交图类所需证书大小的严格下界,证明了所建议的证书是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact distributed certification of geometric graph classes
Distributed proofs allow network nodes to collectively verify if the network satisfies a given predicate. The most versatile mechanism, known as a proof labeling scheme (PLS), functions as the distributed equivalent of NP, where a non-trustable prover assigns each node a certificate. Nodes exchange these certificates with their neighbors to prove the graph satisfies the predicate, with the certificate size being the primary complexity measure. Many graph properties, like planarity or bounded tree-width, can be certified with O(logn)-bit certificates on n-node graphs.
This paper presents O(logn) distributed certifications for recognizing geometric graph classes commonly found in distributed systems: interval graphs, chordal graphs, circular arc graphs, trapezoid graphs, and permutation graphs. It also establishes tight lower bounds on the certificate sizes required for these geometric intersection graph classes, proving that the proposed certifications are optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信