Nano Express最新文献

筛选
英文 中文
Electrically driven cavity plasmons in Au nanowire over Au film 金薄膜上金纳米线中的电驱动空腔质子
Nano Express Pub Date : 2024-07-27 DOI: 10.1088/2632-959x/ad6836
Junhao Zhang, Yu Wu, Wenna Zhou, Jibo Tang, Shunping Zhang, Hongxing Xu
{"title":"Electrically driven cavity plasmons in Au nanowire over Au film","authors":"Junhao Zhang, Yu Wu, Wenna Zhou, Jibo Tang, Shunping Zhang, Hongxing Xu","doi":"10.1088/2632-959x/ad6836","DOIUrl":"https://doi.org/10.1088/2632-959x/ad6836","url":null,"abstract":"\u0000 Light emission via inelastic tunneling electrons is appealing for integrated optoelectronic devices due to its femtosecond time scale that can in principle allow terahertz modulation bandwidth. It has gained renewed interest since 2015 due to the improved quantum efficiency, highly tunable emission wavelength, linewidth, or directionality once the electrodes are designed as a plasmonic nanocavity. However, efficient construction of stable tunnel junctions with desired plasmonic resonances is still technically challenging because of the subnanometer precision required in the electrical and optical design. Here, we demonstrate an easily accessible electrically driven cavity plasmon in metal-insulator-metal (MIM) tunnel junctions, comprised by a Au nanowire (NW) across two separate ultrasmooth Au electrodes. Two layers of self-assembled thiol molecule defines a reliable tunneling barrier. The contribution from the localized cavity plasmons to the total light emission is found to be dominant over that from the propagating surface plasmon polariton in the MIM waveguide, different from the traditional explanations. This work introduces a simplified method for constructing electrically driven cavity plasmons using crystalline metals, which holds promise for applications in in-situ chemical or biosensing and the development of flexible light-emitting metasurfaces.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141797420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, physico-chemical characterization, DFT simulation, and field electron behaviour of 2D layered Ti3C2Tx MXene nanosheets 二维层状 Ti3C2Tx MXene 纳米片的合成、物理化学表征、DFT 模拟和场电子特性
Nano Express Pub Date : 2024-07-24 DOI: 10.1088/2632-959x/ad58fd
Priyanka R Sumbe, Ujjwala Chhote, Gopal Sanyal, Brahmananda Chakraborty, Ahmed Sayeed and Mahendra A More
{"title":"Synthesis, physico-chemical characterization, DFT simulation, and field electron behaviour of 2D layered Ti3C2Tx MXene nanosheets","authors":"Priyanka R Sumbe, Ujjwala Chhote, Gopal Sanyal, Brahmananda Chakraborty, Ahmed Sayeed and Mahendra A More","doi":"10.1088/2632-959x/ad58fd","DOIUrl":"https://doi.org/10.1088/2632-959x/ad58fd","url":null,"abstract":"Nanostructures of Ti3C2Tx, one of the members of the MXenes family, have been successfully prepared by chemical etching of Al from Ti3AlC2 (MAX phase) using Hydrofluoric Acid (HF) for various etching durations at room temperature. The phase, morphological, structural, and chemical analysis was performed using XRD, FESEM, TEM, Raman, and x-ray photoelectron spectroscopy. The surface morphology of as-synthesized Ti3C2Tx (MXene) phase is characterized by stacks of layered sheets like structures. Field electron emission (FEE) behaviour was investigated at the base pressure of 1 × 10−8 mbar. The pristine Ti3AlC2 (MAX) and Ti3C2Tx (MXene) nanosheets emitters showed values of turn-on field (defined at current density ∼ 1 μA cm−2) as 4.18 and 1.67 V μm−1, respectively. Furthermore, maximum emission current density of ∼ 825 μA cm−2 was extracted from the MXene nanosheets emitter at an applied field of 3.60 V μm−1, in contrast to ∼71 μA cm−2 drawn at 7.31 V μm−1 from the pristine MAX emitter. The MXene nanosheets emitter exhibited good emission current stabilities at pre-set values ∼ 10 and 100 μA over 3 h duration. Work function values of the MAX and MXene nanosheets emitters were measured using a retarding field analyzer, and found to be 4.4 and 3.6 eV, respectively. Extensive ab-initio simulations have been performed to provide structural and electronic properties, as well as for estimating the work function of Ti3C2 layered material. The estimated electronic density of states revealed its metallic character. The improved FEE performance exhibited by the 2D layered Ti3C2Tx (MXene) nanosheets emitter is attributed to its unique morphology characterized by high aspect ratio, metallic electronic properties and relatively lower work function.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of diodic behavior in p-NiO/n-SnO2 bilayer heterojunctions fabricated via DC magnetron reactive sputtering 研究通过直流磁控反应溅射制造的 p-NiO/n-SnO2 双层异质结中的二极行为
Nano Express Pub Date : 2024-07-23 DOI: 10.1088/2632-959x/ad668e
Shermin Adline, Prashant Bhat, D. Kekuda
{"title":"Investigation of diodic behavior in p-NiO/n-SnO2 bilayer heterojunctions fabricated via DC magnetron reactive sputtering","authors":"Shermin Adline, Prashant Bhat, D. Kekuda","doi":"10.1088/2632-959x/ad668e","DOIUrl":"https://doi.org/10.1088/2632-959x/ad668e","url":null,"abstract":"\u0000 Tin oxide (SnOx) thin films at varying oxygen flow rates and Nickel oxide (NiO) thin films were deposited by reactive dc magnetron sputtering on glass substrates. Structural, chemical, morphological, optical and electrical properties of the deposited films were studied. XRD studies confirmed that the deposited films were polycrystalline in nature. SnOx thin films have shown two phases such as SnO and SnO2. AFM and SEM were used to analyse the morphology of the films and EDS confirmed the presence of Sn and Ni in the respective films. The examination of the X-ray photoelectron spectrum showed that the sputtered SnOx films contain both Sn2+ and Sn4+ oxidation states and NiO films contain Ni+2 and Ni+3 oxidation states. Photoluminescence study shows strong violet and weak red emission peaks for SnOx films and NiO showed strong emission peaks in the orange-red region. The optical results demonstrate that the films were transparent. The bandgap of SnOx and NiO samples were ~ 3.3 eV and- 3.42 eV, respectively. Further we constructed a p-NiO/n-SnO2 heterojunction diode and its electrical characteristics were thoroughly assessed. Using dark current-voltage measurements, electrical characteristics such saturation current, ideality factor and barrier height were determined. The increase in oxygen flow rate led to reduction in the rectification of the devices. Our findings support the creation of high-performance metal oxide heterojunction for optoelectronic devices.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"136 49","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141811048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renewable Musa Sapientum derived porous nano spheres for efficient energy storage devices 可再生无患子衍生多孔纳米球用于高效储能设备
Nano Express Pub Date : 2024-07-18 DOI: 10.1088/2632-959x/ad64f0
Vandana Molahalli, Gowri Soman, V. Bhat, Jyothi M S, Uraiwan Sirimahachai, Sanjeev P Maradur, Paola De Padova, N. Chattham, G. Hegde
{"title":"Renewable Musa Sapientum derived porous nano spheres for efficient energy storage devices","authors":"Vandana Molahalli, Gowri Soman, V. Bhat, Jyothi M S, Uraiwan Sirimahachai, Sanjeev P Maradur, Paola De Padova, N. Chattham, G. Hegde","doi":"10.1088/2632-959x/ad64f0","DOIUrl":"https://doi.org/10.1088/2632-959x/ad64f0","url":null,"abstract":"\u0000 Biomass-based carbonaceous materials derived from Musa Sapientum have gained much attention in recent years for their application in energy storage devices, especially supercapacitors. In the present work, we synthesized carbonaceous material from banana peel as the biomass precursor by using a pyrolysis method carried out at various temperatures (600, 800, and 1000oC). The characterization of the prepared carbonaceous materials BP600, BP800 and BP1000 was done by using different characterization techniques such as FTIR, XRD, FE-SEM, and TEM, studies. The electrochemical study of the synthesized material was carried out by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) electrochemical impedance spectroscopy (EIS). The supercapacitive performance of the material was studied using a 3-electrode system with 3M KOH as an electrolyte. As a result, the BP600 exhibited a better specific capacitance with higher energy and power densities along with a maximum cyclic stability of 16,000 cycles. To show the practical applicability of the material BP 600, two electrode system studies were carried out as well, which showed preferentially good values for specific capacitance with appreciable power and energy density values. The study provides us with a green approach for the fabrication of non-toxic, low-cost, and environmentally friendly potential porous carbonaceous electrode materials by converting bio-waste into a clean and renewable source of energy.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":" 38","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141824323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, synthesis and anti-oxidant activities of novel 1,2,3,4-tetrazine, 1,2,3-triazoles and coumarin derivatives and their nanoparticular encapsulation 新型 1,2,3,4-四嗪、1,2,3-三唑和香豆素衍生物及其纳米封装的设计、合成和抗氧化活性
Nano Express Pub Date : 2024-07-18 DOI: 10.1088/2632-959x/ad64f1
Oznur Eyilcim, Burcu Belmen, Irem Coksu, Serap Acar, C. Yolacan, Omer Tahir Gunkara
{"title":"Design, synthesis and anti-oxidant activities of novel 1,2,3,4-tetrazine, 1,2,3-triazoles and coumarin derivatives and their nanoparticular encapsulation","authors":"Oznur Eyilcim, Burcu Belmen, Irem Coksu, Serap Acar, C. Yolacan, Omer Tahir Gunkara","doi":"10.1088/2632-959x/ad64f1","DOIUrl":"https://doi.org/10.1088/2632-959x/ad64f1","url":null,"abstract":"\u0000 Nitrogen-containing heterocyclic compounds are currently used for a number of pharmaceutical and agricultural applications because they have biological activities such as antimicrobial, antiviral, antituberculosis, anticancer, analgesic, antioxidant, anti-inflammatory and antidepressant. 1,2,3,4-Tetrazines and 1,2,3-triazoles are examples of high-nitrogen heterocyclic compounds. Coumarins, on the other hand, are lactones that form a group of oxygenated heterocyclic compounds found in plants. In this article, two analogs of 1,2,3,4-tetrazine, two analogs of 1,2,3-triazole and five analogs of coumarin were designed and synthesized. Their chemical structures were characterized by detecting their FTIR, 1H-NMR, and 13C-NMR (APT) spectra. The antioxidant activities of all synthesized molecules were compared at a fixed concentration (0.25 mg/mL) using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. Molecules 9c and 9e, which showed the highest antioxidant activity, were loaded into PLGA (poly(lactic-co-glycolic) acid) nanoparticles using the oil in water (o/w) single emulsion solvent evaporation method as a model study. Synthesized nanoparticles characterized for particle size, zeta potential, functional groups, morphology, and release properties. Particle size and zeta potential of 9c/NP were determined as 216.1±8.944 nm and -14.1±2.40 mV, respectively. The particle size and zeta potential for 9e/NP were measured as 222.0±12.490 nm and -12.4±1.42 mV respectively. The study results obtained on model nanoparticle systems with elucidated physicochemical properties may have the potential to provide a promising basis for oxidative stress-related diseases in the future.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":" 48","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141825475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Staggered band alignment of n-Er2O3/p-Si heterostructure for the fabrication of a high-performance broadband photodetector 用于制造高性能宽带光电探测器的 n-Er2O3/p-Si 异质结构的交错能带排列
Nano Express Pub Date : 2024-07-09 DOI: 10.1088/2632-959x/ad5d81
Anupam Ghosh, Riya Wadhwa, Shivani, Sonia Deswal, Pradeep Kumar and Mukesh Kumar
{"title":"Staggered band alignment of n-Er2O3/p-Si heterostructure for the fabrication of a high-performance broadband photodetector","authors":"Anupam Ghosh, Riya Wadhwa, Shivani, Sonia Deswal, Pradeep Kumar and Mukesh Kumar","doi":"10.1088/2632-959x/ad5d81","DOIUrl":"https://doi.org/10.1088/2632-959x/ad5d81","url":null,"abstract":"The low responsivity of conventional Silicon photodiodes in ultraviolet and near-infrared regimes restricts their utility as broadband photodetectors (BBPDs). Despite ongoing investigations into various p-n heterostructures for Silicon-based BBPDs, challenges such as high dark current (Idark), low collection efficiency, low detectivity, and compatibility issues with large-scale Silicon-based devices persist. In this context, we have fabricated relatively unexplored n-Er2O3/p-Si heterojunction-based BBPDs. Polycrystalline Er2O3 thin films (∼110 nm) were deposited on p-Si 〈100〉 substrates by radio frequency magnetron sputtering. Although this process induces a microstrain of approximately 0.022 and a dislocation density of about 0.00303/nm2, the presence of optically active defects is minimal, indicated by a low Urbach energy (∼0.35 eV). X-ray photoelectron spectroscopy (XPS) analysis confirms staggered band alignment at the heterointerface, facilitating efficient charge carrier separation and transport. Consequently, the In/p-Si/n-Er2O3/In device demonstrated significant BBPD properties– low Idark ∼0.15 μA (at +5 V), photo-to-dark current ratio (PDCR) ∼6.5 (at +5 V, 700 nm) with a maximum photoresponsivity ∼22.3 A W−1, and impressive detectivity (∼1013 Jones) even in UV-C region where traditional silicon-based photodetectors respond feebly. The device also demonstrates transient photo-response across an ultrawide spectrum (254 nm–1200 nm) with a fast rise time/fall time ∼79 ms/∼86 ms (at −5 V for 600 nm illumination). This work establishes a straightforward and reliable method for proper material engineering, surface texturing, staggered heterojunction formation, and high-performance BBPD fabrication with prominent broad-spectrum responsivity, sizeable detectivity, and fast response. The integration of these BBPDs with Silicon opens possibilities for their use in electronic devices containing optical switches for communications and broadband image sensors, enhancing their utility in various applications.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the role of yttrium sesquioxide nanoparticles on the properties of zinc oxide ceramics 研究纳米二氧化钇对氧化锌陶瓷性能的影响
Nano Express Pub Date : 2024-07-09 DOI: 10.1088/2632-959x/ad5d82
Mônica Pereira Soares, Girija Atrey, Prasun Banerjee and Adolfo Franco Junior
{"title":"Investigation of the role of yttrium sesquioxide nanoparticles on the properties of zinc oxide ceramics","authors":"Mônica Pereira Soares, Girija Atrey, Prasun Banerjee and Adolfo Franco Junior","doi":"10.1088/2632-959x/ad5d82","DOIUrl":"https://doi.org/10.1088/2632-959x/ad5d82","url":null,"abstract":"In this work, zinc oxide (ZnO) ceramics were synthesized containing 0-5wt% of cubic yttrium sesquioxide (Y2O3) nanoparticles with solid state sintering technique at 1150°C. The secondary phase of Y2O3 did not enter into the crystalline zinc oxide. The Y2O3 acts as an inhibitor of grain growth. The absorption of the free charge carriers by the Y2O3 phase influences the infrared transmissions. The minimization of the phase mismatch while transferring the electric signal caused lower losses when Y2O3 was added to the zinc oxide matrices. The presence of the cubic sesquioxide at the grain boundary contributes to the interfacial polarization at lower frequencies when an alternating field is applied to the ceramics. These properties are anticipated to show a wider range of physical, optical and dielectric properties of ZnO: Y ceramics for optoelectronic applications.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytotoxic evaluation of Dovyalis Caffra leaf extract-mediated hematite-(Fe2O3) nanoparticles for biological applications Dovyalis Caffra 叶提取物介导的赤铁矿(Fe2O3)纳米粒子在生物应用中的细胞毒性评估
Nano Express Pub Date : 2024-07-09 DOI: 10.1088/2632-959x/ad5d80
Jerry O Adeyemi, Timothy O Ajiboye, Adebola O Oyedeji, Moganavelli Singh and Olaniyi A Fawole
{"title":"Cytotoxic evaluation of Dovyalis Caffra leaf extract-mediated hematite-(Fe2O3) nanoparticles for biological applications","authors":"Jerry O Adeyemi, Timothy O Ajiboye, Adebola O Oyedeji, Moganavelli Singh and Olaniyi A Fawole","doi":"10.1088/2632-959x/ad5d80","DOIUrl":"https://doi.org/10.1088/2632-959x/ad5d80","url":null,"abstract":"Although hematite (Fe2O3) nanoparticles are gaining attention for biomedical purposes due to their unique properties, eco-friendly synthesis using plant extracts is being explored due to toxicity concerns of the resulting material. This study explores the use of plant extracts (Dovyalis caffra leaf extracts) for the synthesis of Fe2O3 nanoparticles alongside their cytotoxicity profile using human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). The physicochemical properties of the prepared nanoparticles were established using x-ray diffraction (XRD) and microscopy techniques, confirming their crystalline nature and spherical morphology with minimal agglomeration. Using the MTT assay approach, the cytotoxicity profile of the nanoparticles revealed dose-dependent cytotoxic effects, with higher specificity towards cancer cells and very low toxicity towards the human cell line, suggesting safe usage as biomedical agents. While the standard drug 5-Fluorouracil possessed significantly higher cytotoxicity, its unwanted high toxicity towards normal human cells makes the Fe2O3 nanoparticles a better choice. These findings suggest the potential of Dovyalis caffra leaf extract-mediated Fe2O3 nanoparticles for biomedical applications, emphasizing their low toxicity towards normal human cells and specificity towards cancer cells.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141585341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogenic Bovine Serum Albumin/Zn3(PO4)2/Cr2O3 hybrid electrocatalyst for improved oxygen evolution reaction 用于改进氧进化反应的生物牛血清白蛋白/Zn3(PO4)2/Cr2O3 混合电催化剂
Nano Express Pub Date : 2024-07-04 DOI: 10.1088/2632-959x/ad5b7a
Ritu Raj, Imtiaz Ahmed, Vikash Kumar, Gajendra Prasad Singh and Krishna Kanta Haldar
{"title":"Biogenic Bovine Serum Albumin/Zn3(PO4)2/Cr2O3 hybrid electrocatalyst for improved oxygen evolution reaction","authors":"Ritu Raj, Imtiaz Ahmed, Vikash Kumar, Gajendra Prasad Singh and Krishna Kanta Haldar","doi":"10.1088/2632-959x/ad5b7a","DOIUrl":"https://doi.org/10.1088/2632-959x/ad5b7a","url":null,"abstract":"The fabrication of nanostructured protein-inorganic hybrid materials is crucial for the development of advanced multifunctional materials. Protein-inorganic mesoporous composites are gaining attention due to their remarkable properties, including large surface areas and active surface functional groups. We have successfully synthesized mesoporous BSA/Zn3(PO4)2/Cr2O3 catalysts to improve the kinetics of the oxygen evolution reaction (OER) in electrocatalytic water splitting for sustainable energy generation. This approach utilizes BSA in the synthesis process and is environmentally friendly. By adjusting the BSA quantity, we could control the yield of BSA/Zn3(PO4)2/Cr2O3 mesoporous. We employed various techniques, including FE-SEM, XRD, and FTIR, to analyze the morphology and structural characteristics of the biogenic BSA/Zn3(PO4)2/Cr2O3 electrocatalyst. Our comprehensive evaluation of the electrocatalytic OER activity of the BSA/Zn3(PO4)2/Cr2O3 hybrid structure demonstrated its remarkable performance. The biologically synthesized catalyst exhibited exceptional OER efficiency, maintaining a high current density of 10 mA cm−2 at very low overpotentials (only 216 mV) under alkaline conditions. The elongated peptide backbone of BSA significantly facilitated ion and electron transport, contributing to improved OER activity. The synergistic interaction between various amino acids from BSA and the metal ions within Zn3(PO4)2/Cr2O3 can be attributed to this enhancement, highlighting the potential of this hybrid structure in electrocatalytic OER applications.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141552513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bismuth sulfide quantum dots-CsPbBr3 perovskite nanocrystals heterojunction for enhanced broadband photodetection 用于增强宽带光探测的硫化铋量子点-CsPbBr3 包晶石纳米晶体异质结
Nano Express Pub Date : 2024-06-19 DOI: 10.1088/2632-959x/ad52b2
Lalita, Aditya Yadav, Harshit Sharma, Govind Gupta, Razi Ahmad, Vidya Nand Singh and Ritu Srivastava
{"title":"Bismuth sulfide quantum dots-CsPbBr3 perovskite nanocrystals heterojunction for enhanced broadband photodetection","authors":"Lalita, Aditya Yadav, Harshit Sharma, Govind Gupta, Razi Ahmad, Vidya Nand Singh and Ritu Srivastava","doi":"10.1088/2632-959x/ad52b2","DOIUrl":"https://doi.org/10.1088/2632-959x/ad52b2","url":null,"abstract":"Colloidal semiconductor nanocrystals (NCs) or quantum dots (QDs) have shown great potential for solution-processable photodetector due to their exceptional optical and electronic properties. However, broadband and sensitive photodetection from single QDs- based devices is quite challenging. Nano-heterojunction with proper band alignment based on two different materials offers significant advantages for developing broadband photodetector. Herein, we report ultraviolet–visible (UV–Vis) to near-infrared (NIR) light-responsive photodetector based on solution-processed nano-heterojunction of visible light absorber CsPbBr3 perovskite NCs and wide absorption range, environment-friendly Bi2S3 QDs. Our results demonstrate that the CsPbBr3–Bi2S3 nano-heterojunction-based photodetector has higher responsivity (380 μA/W at a wavelength of 532 nm) and higher specific detectivity (1.02 × 105 Jones), as compared to the individual CsPbBr3 or Bi2S3 QDs based devices. Interestingly, the detection wavelength range of our heterojunction device is further extended to the near-infrared region (1064 nm) due to the broadband absorption range of Bi2S3 QDs, which is not observed in the visible light absorber CsPbBr3 devices. Remarkably, the responsivity of the heterojunction device is 90 μA W−1. The enhanced specific detectivity and the broadband response of hybrid devices are attributed to the improved charge carrier generation, efficient charge separation and transfer at the interface between CsPbBr3 and Bi2S3 QDs.","PeriodicalId":501827,"journal":{"name":"Nano Express","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信