M. Ensoy, İlayda Öztürk, D. Cansaran-Duman, Açelya Yilmazer
{"title":"Inducing ferroptosis via nanomaterials: a novel and effective route in cancer therapy","authors":"M. Ensoy, İlayda Öztürk, D. Cansaran-Duman, Açelya Yilmazer","doi":"10.1088/2515-7639/ad4d1e","DOIUrl":"https://doi.org/10.1088/2515-7639/ad4d1e","url":null,"abstract":"\u0000 The use of nanomaterials for cancer ferroptosis presents a promising avenue for research and clinical applications. The unique properties of nanomaterials, such as their small size, large surface area, and ability to be engineered for specific tasks, make them ideal candidates for ferroptosis inducing cancer therapies. Ferroptosis is a new type of cell death mechanism that is distinct from apoptosis and necrosis. It has been shown to be critical in the treatment of various tumors. The ferroptotic mechanism has been mainly linked with the regulation of iron, amino acid, glutathione, and lipid metabolism of cells. The relationship between ferroptosis mechanisms and cancer nanomedicine has attracted considerable interest in recent years. It has been reported that the combination of nanomedicine and ferroptosis can achieve high therapeutic efficacy for the treatment of different cancer types. This review will provide an overview of recent work in ferroptosis-related cancer nanomedicine. First, general information is given about the definition of ferroptosis and its differences from other cell death mechanisms. Later, studies exploring the role of ferroptosis in the cancer nanomedicine field are discussed in detail. Specific focus has been given to the use of combinatorial treatment strategies which combine ferroptosis with chemodynamic therapy, photodynamic therapy, photothermal therapy, immunotherapy and sonodynamic therapy. Considering the fact that ferroptosis inducing nanoparticles have already been introduced into clinical studies, nanoscientists can further accelerate this clinical translation as they tailor the physicochemical characteristics of nanomaterials. This review provides enlightening information for all researchers interested in the molecular characterization and relationship between ferroptosis and cancer-directed nanoparticles.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"8 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging functions of two-dimensional materials in memristive neurons","authors":"Yuwan Hong, Yanming Liu, Ruonan Li, He Tian","doi":"10.1088/2515-7639/ad467b","DOIUrl":"https://doi.org/10.1088/2515-7639/ad467b","url":null,"abstract":"\u0000 Neuromorphic computing (NC), considered as a promising candidate for future computer architecture, can facilitate more biomimetic intelligence while reducing energy consumption. Neuron is one of the critical building blocks of NC systems. Researchers have been engaged in promoting neuron devices with better electrical properties and more biomimetic functions. Two-dimensional (2D) materials, with ultrathin layers, diverse band structures, featuring excellent electronic properties and various sensing abilities, are promised to realize these requirements. Here, the progress of artificial neurons brought by 2D materials is reviewed, from the perspective of electrical performance of neuron devices, from stability, tunability to power consumption and on/off ratio. Rose up to system-level applications, algorithms and hardware implementation of spiking neural network, stochastic neural network and artificial perception system based on 2D materials are reviewed. 2D materials not only facilitate the realization of NC systems but also increase the integration density. Finally, current challenges and perspectives on developing 2D material-based neurons and NC systems are systematically analyzed, from the bottom 2D materials fabrication to novel neural devices, more brain-like computational algorithms and systems.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"22 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140967084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Galvani, Ali K Hamze, Laura Caputo, Onurcan Kaya, Simon Dubois, Luigi Colombo, Viet-Hung Nguyen, Yongwoo Shin, Hyeon-Jin Shin, Jean-Christophe Charlier, Stephan Roche
{"title":"Exploring Dielectric Properties in Atomistic Models of Amorphous Boron Nitride","authors":"Thomas Galvani, Ali K Hamze, Laura Caputo, Onurcan Kaya, Simon Dubois, Luigi Colombo, Viet-Hung Nguyen, Yongwoo Shin, Hyeon-Jin Shin, Jean-Christophe Charlier, Stephan Roche","doi":"10.1088/2515-7639/ad4c06","DOIUrl":"https://doi.org/10.1088/2515-7639/ad4c06","url":null,"abstract":"\u0000 We report a theoretical study of dielectric properties of models of amorphous Boron Nitride, using interatomic potentials generated by machine learning. We first perform first-principles simulations on small (about 100 atoms in the periodic cell) sample sizes to explore the emergence of mid-gap states and its correlation with structural features. Next, by using a simplified tight-binding electronic model, we analyse the dielectric functions for complex three dimensional models (containing about 10.000 atoms) embedding varying concentrations of sp1, sp2 and sp3 bonds between B and N atoms. Within the limits of these methodologies, the resulting value of the zero-frequency dielectric constant is shown to be influenced by the population density of such mid-gap states and their localization characteristics. We observe nontrivial correlations between the structure-induced electronic fluctuations and the resulting dielectric constant values. Our findings are however just a first step in the quest of accessing fully accurate dielectric properties of as-grown amorphous BN of relevance for interconnect technologies and beyond.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"88 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140973188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. G. Aras, Abdulsalam Aji Suleiman, Amir Parsi, S. Kasirga, Aydan Yeltik
{"title":"Molten Glass-Mediated Conditional CVD Growth of MoS2 Monolayers and Effect of Surface Treatment on Their Optical Properties","authors":"F. G. Aras, Abdulsalam Aji Suleiman, Amir Parsi, S. Kasirga, Aydan Yeltik","doi":"10.1088/2515-7639/ad4c05","DOIUrl":"https://doi.org/10.1088/2515-7639/ad4c05","url":null,"abstract":"\u0000 In the rapidly developing field of optoelectronics, the utilization of transition-metal dichalcogenides with adjustable band gaps holds great promise. MoS2, in particular, has garnered considerable attention owing to its versatility. However, a persistent challenge is to establish a simple, reliable and scalable method for large-scale synthesis of continuous monolayer films. In this paper, we report the growth of continuous large-area monolayer MoS2 films using a glass-assisted chemical vapor deposition (CVD) process. High-quality monolayer films were achieved by precisely controlling carrier gas flow and sulfur vaporization with a customized CVD system. Additionally, we explored the impact of chemical treatment using lithium bistrifluoromethylsulfonylamine (Li-TFSI) salt on the optical properties of monolayer MoS2 crystals. To investigate the evolution of excitonic characteristics, we conditionally grew monolayer MoS2 flakes by controlling sulfur evaporation. We reported two scenarios on MoS2 films and flakes based on substrate-related strain and defect density. Our findings revealed that high-quality monolayer MoS2 films exhibited lower treatment efficiency due to substrate-induced surface strain, whereas defective monolayer MoS2 flakes demonstrated a higher treatment sensitivity a p-doping effect. The Li-TFSI-induced changes in exciton density were elucidated through photoluminescence (PL), Raman, and X-ray photoelectron spectroscopy (XPS) results. Furthermore, we demonstrated treatment-related healing in flakes under variable laser excitation power. The advancements highlighted in our study carry significant implications for the scalable fabrication of diverse optoelectronic devices, potentially paving the way for widespread real-world applications.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"51 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140972872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electromechanical strain response of phosphorene nanotubes","authors":"Kevin Tran, P. Taylor, Michelle J. S. Spencer","doi":"10.1088/2515-7639/ad4c07","DOIUrl":"https://doi.org/10.1088/2515-7639/ad4c07","url":null,"abstract":"\u0000 Nanomaterials that undergo structural or other property changes upon application of external stimuli are called stimuli responsive materials and are particularly suited for drug delivery, biosensing or artificial muscle applications. Two-dimensional (2D) black phosphorus is an ideal material for such applications due to its remarkable electromechanical response. Given that one-dimensional (1D) black phosphorus nanotubes (PNTs) are calculated to be energetically stable, it is possible that they can undergo similar electromechanical responses to their 2D counterparts, allowing their potential application as nanochannel devices for drug delivery. Using first-principles density functional theory, we investigated the electromechanical response of different-sized PNTs upon charge injection. Upon hole injection, the diameter of the PNTs expands up to a maximum of 30.2% for a (0,15) PNT that is 0.24 nm in diameter. The PNTs become highly p-doped as the valence band maximum crosses the Fermi level and undergoes switching from a direct to indirect band gap. The mechanism behind the electromechanical response was determined through analysis of the structural deformations, charge density distribution and Bader partial charges. It was shown that injection of charge alters the Young’s Modulus of the PNTs, as hole injection weakens the structural integrity of the nanotube, allowing a greater electromechanical response, with PNT-15 showing the largest decrease in the Young’s Modulus of 15.34%. These findings show that 1D PNTs are promising materials for the development of nanoelectromechanical actuators which could be used for drug delivery, energy harvesting or similar applications.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"54 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140975183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hiroyuki Nakamura, Hiroto Ohta, Ryuya Kobayashi, Takeshi Waki, Yoshikazu Tabata, Hidekazu Ikeno and Christian Mény
{"title":"Site-selective cobalt substitution in La–Co co-substituted magnetoplumbite-type ferrites: 59Co-NMR and DFT calculation study","authors":"Hiroyuki Nakamura, Hiroto Ohta, Ryuya Kobayashi, Takeshi Waki, Yoshikazu Tabata, Hidekazu Ikeno and Christian Mény","doi":"10.1088/2515-7639/ad3b6d","DOIUrl":"https://doi.org/10.1088/2515-7639/ad3b6d","url":null,"abstract":"The La–Co co-substituted magnetoplumbite-type (M-type) ferrites AFe12O19 (A = Ca, Sr and Ba, ion sizes Ca2+ Sr2+ Ba2+) with Co compositions around 0.2 have been subjected to 59Co-NMR. The results show that Co occupies the 4f1, 2a and 12k sites, and that the smaller the A ion, the more Co tends to occupy the 4f1 minority spin site, which is effective in enhancing both uniaxial anisotropy and magnetisation. First-principles total energy calculations based on density functional theory (DFT) of undoped AFe12O19 and a supercell ( of the unit cell) in which 1/96 of Fe3+ is replaced by Co2+ were performed to predict the stable structure and Co occupancy sites. The results show that regardless of A, Co is most stable when it occupies the 4f1 site, followed by the 2a and 12k sites with energy differences on the order of 100 meV, and Co practically does not occupy the 2b and 4f2 sites. As the A ion becomes smaller, the energy difference when Co occupies each Fe site tends to increase, and the Co occupancy of the 4f1 site also increases. The site selectivity of Co can be roughly explained as a result of the difference in uniaxial strain along the c-axis associated with the difference in A. However, the influence of the A ion differs between the R and S blocks and the local strain also has a secondary effect on the Co distribution. Based on these results, the guidelines for improving the performance (anisotropy and magnetisation) of La–Co co-substituted M-type ferrite magnets with a limited amount of Co can be summarised as follows: It is effective to select as small A ions as possible and to post-anneal at low temperature or cool slowly to concentrate Co at the 4f1 site in tetrahedral coordination.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"315 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140805682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayana Ghosh, Palanichamy Gayathri, Monirul Shaikh, Saurabh Ghosh
{"title":"Structural mode coupling in perovskite oxides using hypothesis-driven active learning","authors":"Ayana Ghosh, Palanichamy Gayathri, Monirul Shaikh, Saurabh Ghosh","doi":"10.1088/2515-7639/ad3fea","DOIUrl":"https://doi.org/10.1088/2515-7639/ad3fea","url":null,"abstract":"\u0000 Finding the ground-state structure with minimum energy is paramount to designing any material. In ABO3-type perovskite oxides with Pnma symmetry, the lowest energy phase is driven by an inherent trilinear coupling between the two primary order parameters such as rotation and tilt with antiferroelectric displacement of the A-site cations as established via hybrid improper ferroelectric mechanism. Conventionally, finding the relevant mode coupling driving phase transition requires performing first-principles computations which is computationally time-consuming as well as expensive. It involves following an intuitive iterative hit and trial method of (a) adding two or multiple mode vectors, (b) evaluating which combination would lead to the ground-state energy. In this study, we show how a hypothesis-driven active learning framework can identify suitable mode couplings within the Landau free energy expansion with minimal information on amplitudes of modes for a series of double perovskite oxides with A-site layered, columnar and rocksalt ordering. This scheme is expected to be applicable universally for understanding atomistic mechanisms derived from various structural mode couplings behind functionalities, for e.g., polarization, magnetization and metal-insulator transitions.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":" 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140691628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phosphosulfide semiconductors for optoelectronics and solar energy conversion","authors":"Lena A Mittmann, Andrea Crovetto","doi":"10.1088/2515-7639/ad3aa3","DOIUrl":"https://doi.org/10.1088/2515-7639/ad3aa3","url":null,"abstract":"Inorganic phosphosulfides—materials containing phosphorus, sulfur, and at least one metal—are a vast and chemically-versatile family of materials. Benefiting from a wide range of possible phosphorus oxidation states, phosphosulfide semiconductors exist as thiophosphate compounds with various types of P–S polyanions, as genuine multi-anion compounds with or without P–P bonds, as solid solutions, and as many intermediate cases. Since metal phosphides and metal sulfides are among the highest-performing optoelectronic semiconductors, it seems reasonable to consider the phosphosulfide family as a potential pool of materials for solar cells, photoelectrochemical cells, and light-emitting diodes. Nevertheless, phosphosulfide semiconductors have very rarely been characterized with these applications in mind. In this perspective article, we reflect on the potential applicability of known and hypothetical phosphosulfides as light absorbers and emitters in optoelectronic devices. First, we distill the existing knowledge accessible through the Materials Project database, finding promising phosphosulfides among the compounds already present in the database and identifying what we see as the general advantages and challenges of phosphosulfides as optoelectronic materials. Then, we propose three concrete research directions aimed at finding novel high-quality phosphosulfide semiconductors with high light absorption coefficients, high carrier mobilities, and long carrier lifetimes. In particular, we argue that the versatility of phosphorus in this class of materials could potentially be exploited to engineer defect tolerance. Finally, we describe and explain the advantages of a custom synthesis setup dedicated to high-throughput exploration of thin-film phosphosulfides.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"127 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Al-Farsi, Michele Cutini, Neil Allan, Judy N Hart
{"title":"Indirect control of band gaps by manipulating local atomic environments using solid solutions and co-doping","authors":"M. Al-Farsi, Michele Cutini, Neil Allan, Judy N Hart","doi":"10.1088/2515-7639/ad3c92","DOIUrl":"https://doi.org/10.1088/2515-7639/ad3c92","url":null,"abstract":"\u0000 The ability to tune band gaps of semiconductors is important for many optoelectronics applications including photocatalysis. A common approach to this is doping, but this often has the disadvantage of introducing defect states in the electronic structure that can result in poor charge mobility and increased recombination losses. In this work, density functional theory calculations are used to understand how co-doping and solid solution formation can allow tuning of semiconductor band gaps through indirect effects. The addition of ZnS to GaP alters the local atomic environments of the Ga and P atoms, resulting in shifts in the energies of the Ga and P states that form the valence and conduction band edges, and hence changes the band gap without altering which atoms form the band edges, providing an explanation for previous experimental observations. Similarly, N doping of ZnO is known from previous experimental work to reduce the band gap and increase visible-light absorption; here we show that, when co-doped with Al, the Al changes the local environment of the N atoms, providing further control of the band gap without introducing new states within the band gap or at the band edges, while also providing an energetically more favourable state than N-doped ZnO. Replacing Al with elements of different electronegativity is an additional tool for band gap tuning, since the different electronegativities correspond to different effects on the N local environment. The consistency in the parameters identified here that control the band gaps across the various systems studied indicates some general concepts that can be applied in tuning the band gaps of semiconductors, without or only minimally affecting charge mobility.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"19 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140720632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaobo Luo, Zongyu Huang, H. Qiao, Xiang Qi, Xiangyang Peng
{"title":"Valleytronics in two-dimensional magnetic materials","authors":"Chaobo Luo, Zongyu Huang, H. Qiao, Xiang Qi, Xiangyang Peng","doi":"10.1088/2515-7639/ad3b6e","DOIUrl":"https://doi.org/10.1088/2515-7639/ad3b6e","url":null,"abstract":"\u0000 Valleytronics uses valleys to encode information. It combines other degrees of freedom to produce a more comprehensive, stable, and efficient information processing system. However, in nonmagnetic valleytronic materials, the valley polarization is transient and the depolarization occurs once the external excitation is withdrawn. Introduction of magnetic field is an effective approach to realizing the spontaneous valley polarization by breaking the time-reversal symmetry. In hexagonal magnetic valleytronic materials, the inequivalent valleys at the K and -K Dirac cones have asymmetric energy gaps and Berry curvatures. The time-reversal symmetry in nonmagnetic materials can be broken by applying an external magnetic field, adding a magnetic substrate or doping magnetic atoms. Recent theoretical studies have demonstrated that valleytronic materials with intrinsic ferromagnetism, now termed as ferrovalley materials, exhibit spontaneous valley polarization without the need for external fields to maintain the polarization. The coupling of the valley and spin degrees of freedom enables stable and unequal distribution of electrons in the two valleys and thus facilitating nonvolatile information storage. Hence, ferrovalley materials are promising materials for valleytronic devices. In this review, we first briefly overview valleytronics and its related properties, the ways to realize valley polarization in nonmagnetic valleytronic materials. Then we focus on the recent developments in two-dimensional ferrovalley materials, which can be classified according to their molecular formula and crystal structure: MX2; M(XY)2, M(XY2) and M(XYZ)2; M2X3, M3X8 and MNX6; MNX2Y2, M2X2Y6 and MNX2Y6; and the Janus structure ferrovalley materials. In the inequivalent valleys, the Berry curvatures have opposite signs with unequal absolute values, leading to anomalous valley Hall effect. When the valley polarization is large, the ferrovalleys can be selectively excited even with unpolarized light. Intrinsic valley polarization in two-dimensional ferrovalley materials is of great importance. It opens a new avenue for information-related applications and hence is under rapid development.","PeriodicalId":501825,"journal":{"name":"Journal of Physics: Materials","volume":"30 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140737850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}