Sydney Furman, Alexandros Chasapis, David Malaspina, Peter Tatum, Benjamin Short, Harriet George and Mihailo Martinović
{"title":"Small-scale Current Sheets and Associated Switchback Activity in the Inner Heliosphere","authors":"Sydney Furman, Alexandros Chasapis, David Malaspina, Peter Tatum, Benjamin Short, Harriet George and Mihailo Martinović","doi":"10.3847/2041-8213/ad8c38","DOIUrl":"https://doi.org/10.3847/2041-8213/ad8c38","url":null,"abstract":"Several long-standing theories postulate that turbulent dissipation can heat solar wind protons in situ. Turbulent dissipation can occur via current sheets, which are small-scale structures embedded in the solar wind magnetic field. This study examines the role that switchbacks—intermediate-scale reversals in the interplanetary magnetic field—may play in heating the solar wind by generating current sheets. We explore this possible relationship by analyzing the characteristics of current sheets within and around switchback regions. Previous studies investigated current sheet properties during Parker Solar Probe's first solar encounter, analyzed current sheets using a wide range of statistics, and explored trends that switchbacks follow with radial distance from the Sun. The present study builds on these works by analyzing the distribution and maximum values of solar wind current sheets using the Partial Variance of Increments method and focusing on how these properties correlate with the presence of switchbacks to better understand how switchbacks contribute to current sheet activity. We conclude that there are no increased current sheet populations observed within and around switchbacks, with most current sheets being observed outside switchbacks. We find a consistent distribution of current sheets regardless of whether there is concurrent switchback activity. We also observe that current sheets follow a uniform occurrence rate with increased distance from the Sun, while switchback regions significantly evolve with larger radial distances. Our findings suggest that local turbulence may be responsible for generating solar wind current sheets and does so with the same efficiency inside and outside of switchback regions.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fuyu Li, Changhui Rao, Huaning Wang, Xinhua Zhao, Nanbin Xiang, Linhua Deng, Haitang Li and Yu Liu
{"title":"Large Eruptive and Confined Flares in Relation to the Solar Active Region Evolution","authors":"Fuyu Li, Changhui Rao, Huaning Wang, Xinhua Zhao, Nanbin Xiang, Linhua Deng, Haitang Li and Yu Liu","doi":"10.3847/2041-8213/ad8c37","DOIUrl":"https://doi.org/10.3847/2041-8213/ad8c37","url":null,"abstract":"Solar active regions (ARs) provide the required magnetic energy and the topology configuration for flares. Apart from conventional static magnetic parameters, the evolution of AR magnetic flux systems should have nonnegligible effects on magnetic energy store and the trigger mechanism of eruptions, which would promote the prediction for the flare using photospheric observations conveniently. Here we investigate 322 large (M- and X-class) flares from 2010 to 2019, almost the whole solar cycle 24. The flare occurrence rate is obviously higher in the developing phase, which should be due to the stronger shearing and complex configurations caused by affluent magnetic emergences. However, the probability of flare eruptions in decaying phases of ARs is obviously higher than that in the developing phase. The confined flares were in nearly equal counts to eruptive flares in developing phases, whereas the eruptive flares were half over confined flares in decaying phases. Yearly looking at flare eruption rates demonstrates the same conclusion. The relationship between sunspot group areas and confined/erupted flares also suggested that the strong field make constraints on the mass ejection, though it can contribute to flare productions. The flare indexes also show a similar trend. It is worth mentioning that all the X-class flares in the decaying phase were erupted, without the strong field constraint. The decaying of magnetic flux systems had facilitation effects on flare eruptions, which may be consequent on the splitting of magnetic flux systems.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"245 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiajun Liu, Zhendi Huang, Jingnan Guo, Yubao Wang, Jiajia Liu
{"title":"Predicting the Energy Spectra of Solar Energetic Particles with a Machine Learning Regression Algorithm","authors":"Jiajun Liu, Zhendi Huang, Jingnan Guo, Yubao Wang, Jiajia Liu","doi":"10.3847/2041-8213/ad8bbc","DOIUrl":"https://doi.org/10.3847/2041-8213/ad8bbc","url":null,"abstract":"Solar energetic particles (SEPs) are a major source of space radiation, especially within the inner heliosphere. These particles, originating from solar flares and coronal mass ejections (CMEs), propagate primarily along interplanetary magnetic fields. The energy spectra of SEP events are crucial for assessing radiation effects and understanding the acceleration and propagation mechanisms in their source regions. In this study, we employed a decision tree regression algorithm with cost complexity pruning to predict SEP energy spectra, including peak flux and integral fluence spectra. This approach uses only solar flares, CMEs, and solar wind data as input parameters and demonstrates strong performance to accurately predict SEP spectra. This method holds significant real-time application value for monitoring and forecasting radiation risks in both deep space and near-Earth environments.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen Cao, F. Aharonian, Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X..
{"title":"Detection of Very High-energy Gamma-Ray Emission from the Radio Galaxy M87 with LHAASO","authors":"Zhen Cao, F. Aharonian, Axikegu, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, W. Bian, A. V. Bukevich, Q. Cao, W. Y. Cao, Zhe Cao, J. Chang, J. F. Chang, A. M. Chen, E. S. Chen, H. X. Chen, Liang Chen, Lin Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, M. C. Chu, M. Y. Cui, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, Danzengluobu, X. Q. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, J. Fang, J. H. Fang, K. Fang, C. F. Feng, H. Feng, L. Feng, S. H. Feng, X. T. Feng, Y. Feng, Y. L. Feng, S. Gabici, B. Gao, C. D. Gao, Q. Gao, W. Gao, W. K. Gao, M. M. Ge, T. T. Ge, L. S. Geng, G. Giacinti, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, O. A. Hannuksela, M. Hasan, H. H. He, H. N. He, J. Y. He, Y. He, Y. K. Hor, B. W. Hou, C. Hou, X. Hou, H. B. Hu, Q. Hu, S. C. Hu, C. Huang, D. H. Huang, T. Q. Huang, W. J. Huang, X. T. Huang, X..","doi":"10.3847/2041-8213/ad8921","DOIUrl":"https://doi.org/10.3847/2041-8213/ad8921","url":null,"abstract":"The nearby radio galaxy M87 is a very high-energy (VHE) gamma-ray emitter established by observations with ground-based gamma-ray detectors. Here we report the long-term monitoring of M87 from 2021 to 2024 with the Large High Altitude Air Shower Observatory (LHAASO). M87 has been detected by LHAASO with a statistical significance ∼ 9σ. The observed energy spectrum extends to 20 TeV, with a possible hardening at ∼20 TeV and then a clear softening at higher energies. Assuming that the intrinsic spectrum is described by a single power law up to 20 TeV, a tight upper bound on the extragalactic background light intensity is obtained. A strong VHE flare lasting 8 days, with a rise time of days and decay time of days, was found in early 2022. A possible GeV flare is seen also in Fermi Large Area Telescope data during the VHE flare period. The variability time as short as 1 day seen in the LHAASO data suggests a compact emission region with a size of ∼3 × 1015δ cm (δ being the Doppler factor of the emitting region), corresponding to a few Schwarzschild radii of the central supermassive black hole in M87. The continuous monitoring of the source reveals a duty cycle of ∼1% for VHE flares with a flux above 10−11 erg cm−2 s−1.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"150 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Georgia Mraz, Antoine Darveau-Bernier, Anne Boucher, Nicolas B. Cowan, David Lafrenière, Charles Cadieux
{"title":"Out of the Darkness: High-resolution Detection of CO Absorption on the Nightside of WASP-33b","authors":"Georgia Mraz, Antoine Darveau-Bernier, Anne Boucher, Nicolas B. Cowan, David Lafrenière, Charles Cadieux","doi":"10.3847/2041-8213/ad8438","DOIUrl":"https://doi.org/10.3847/2041-8213/ad8438","url":null,"abstract":"We observed the ultrahot Jupiter WASP-33b with the SpectroPolarimètre InfraRouge on the Canada–France–Hawaii Telescope. Previous observations of the dayside of WASP-33b show evidence of CO and Fe emission indicative of a thermal inversion. We observed its nightside over five Earth nights to search for spectral signatures of CO in the planet’s thermal emission. Our three pretransit observations and two posttransit observations are sensitive to regions near the morning or evening terminators, respectively. From spectral retrievals, we detect CO molecular absorption in the planet’s emission spectrum after transit at ∼6.6<italic toggle=\"yes\">σ</italic>. This is the strongest ground-based detection of nightside thermal emission from an exoplanet and only the third ever. CO appearing in absorption suggests that the nightside near the evening terminator does not have a temperature inversion; this makes sense if the dayside inversion is driven by absorption of stellar radiation. On the contrary, we do not detect CO from the morning terminator. This may be consistent with heat advection by an eastward jet. Phase-resolved high-resolution spectroscopy offers an economical alternative to space-based full-orbit spectroscopic phase curves for studying the vertical and horizontal atmospheric temperature profiles of short-period exoplanets.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
George N. Wong, Lia Medeiros, Alejandro Cárdenas-Avendaño and James M. Stone
{"title":"Measuring Black Hole Light Echoes with Very Long Baseline Interferometry","authors":"George N. Wong, Lia Medeiros, Alejandro Cárdenas-Avendaño and James M. Stone","doi":"10.3847/2041-8213/ad8650","DOIUrl":"https://doi.org/10.3847/2041-8213/ad8650","url":null,"abstract":"Light passing near a black hole can follow multiple paths from an emission source to an observer due to strong gravitational lensing. Photons following different paths take different amounts of time to reach the observer, which produces an echo signature in the image. The characteristic echo delay is determined primarily by the mass of the black hole, but it is also influenced by the black hole spin and inclination to the observer. In the Kerr geometry, echo images are demagnified, rotated, and sheared copies of the direct image and lie within a restricted region of the image. Echo images have exponentially suppressed flux, and temporal correlations within the flow make it challenging to directly detect light echoes from the total light curve. In this Letter, we propose a novel method to search for light echoes by correlating the total light curve with the interferometric signal at high spatial frequencies, which is a proxy for indirect emission. We explore the viability of our method using numerical general relativistic magnetohydrodynamic simulations of a near-face-on accretion system scaled to M87-like parameters. We demonstrate that our method can be used to directly infer the echo delay period in simulated data. An echo detection would be clear evidence that we have captured photons that have circled the black hole, and a high-fidelity echo measurement would provide an independent measure of fundamental black hole parameters. Our results suggest that detecting echoes may be achievable through interferometric observations with a modest space-based very long baseline interferometry mission.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overestimation of Astrophysical Gamma-Ray Energies during Thunderstorms: Synergy of Galactic and Atmospheric Accelerators","authors":"A. Chilingarian and M. Zazyan","doi":"10.3847/2041-8213/ad85e1","DOIUrl":"https://doi.org/10.3847/2041-8213/ad85e1","url":null,"abstract":"Particle accelerators abound in space plasmas, saturating the cosmos with fully stripped nuclei and gamma rays, with energies surpassing the capabilities of human-made accelerators by orders of magnitude. Upon reaching Earth’s atmosphere, these particles trigger extensive air showers (EASs), generating millions of secondary cosmic rays of lower energies. Free electrons from EASs developing in the atmosphere are seeds for atmospheric electron accelerators. Strong atmospheric electric fields (AEFs) evolving during thunderstorms act as accelerators, amplifying the intensity of electrons many times, significantly enlarging the EAS size (number of electrons). Thus, the energy of the primary cosmic ray recovered by EAS size can be significantly overestimated. Recently discovered by high-altitude EAS arrays, PeVatron candidates (ultra–high-energy (UHE) astrophysical gamma-ray sources) must be carefully examined according to the atmospheric conditions during EAS detection. Large High Altitude Air Shower Observatory and High-Altitude Water Cherenkov Observatory arrays are located in regions of frequent thunderstorms, and an AEF’s strength can reach and surpass the critical strength to start relativistic runaway electron avalanches. A few registered UHE gamma rays from stellar sources can be registered at just this time when the AEF highly enhances the EAS size. Thunderstorm ground enhancements are copiously registered at mountain peaks of Eastern Europe, Germany, and Armenia, with energies well above the threshold energy of EAS array scintillators. Thus, the overestimation of the energy of primary particles is not an exotic process but a consequence of already well-established physical phenomena. Consequently, a report on each registered UHE gamma ray should include the recorded time and corresponding weather conditions.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics of Binary Planets within Star Clusters","authors":"Yukun Huang, 宇坤 黄, Wei Zhu, 伟 祝, Eiichiro Kokubo and 保英一郎 小久","doi":"10.3847/2041-8213/ad8925","DOIUrl":"https://doi.org/10.3847/2041-8213/ad8925","url":null,"abstract":"We develop analytical tools and perform three-body simulations to investigate the orbital evolution and dynamical stability of binary planets within star clusters. Our analytical results show that the orbital stability of a planetary-mass binary against passing stars is mainly related to its orbital period. Critical flybys, defined as stellar encounters with energy kicks comparable to the binary binding energy, can efficiently produce a wide range of semimajor axes (a) and eccentricities (e) from a dominant population of primordially tight Jupiter-mass binary objects (JuMBOs). The critical flyby criterion we derived offers an improvement over the commonly used tidal radius criterion, particularly in high-speed stellar encounters. Applying our results to the recently discovered JuMBOs by the James Webb Space Telescope (JWST), our simulations suggest that to match the observed ∼9% wide binary fraction, an initial semimajor axis of a0 ∼ 10–20 au and a density-weighted residence time of χ ≳ 104 Myr pc−3 are favored. These results imply that the JWST JuMBOs probably formed as tight binaries near the cluster core.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiming Jiao, Ying D. Liu, Wenshuai Cheng, Hao Ran and Rui Wang
{"title":"On the Acceleration of the Young Solar Wind from Different Source Regions","authors":"Yiming Jiao, Ying D. Liu, Wenshuai Cheng, Hao Ran and Rui Wang","doi":"10.3847/2041-8213/ad85ea","DOIUrl":"https://doi.org/10.3847/2041-8213/ad85ea","url":null,"abstract":"The acceleration of the young solar wind is studied using the first 17 encounters of the Parker Solar Probe. We identify wind intervals from different source regions: coronal hole (CH) interiors, streamers, and low-Mach-number boundary layers (LMBLs), i.e., the inner boundaries of coronal holes. We present their statistical trends in the acceleration process. Most of the observations can be reproduced by a two-fluid hydrodynamic model with realistic corona temperatures. In such a model, the solar wind is accelerated by the combined thermal pressures of protons and electrons, but it is mainly the difference in the proton pressure that leads to the difference in the solar wind speed. The proton pressure is the highest in the fastest CH wind, with a high initial proton temperature that decreases slowly. It is lower in the relatively slow LMBL wind and the lowest in the slowest streamer wind. The proton temperature is quadratically correlated with the wind speed when scaled to the same distance. In contrast, the electron temperature shows no significant differences for different wind types or wind speeds, indicating more similar contributions from the electron pressure. The model gives reasonable locations for the sonic critical point, which is on average at 3.6–7.3 Rs and can also extend to large distances when the proton temperature is extremely low, as in the LMBL wind. In addition to the thermal pressure, we raise the possibility that Alfvén waves may contribute to the solar wind acceleration, especially for the fast CH wind.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ling Chen, 玲 陈, Bing Ma, 兵 马, Dejin Wu, 德金 吴, Zongjun Ning, 宗军 宁, Xiaowei Zhou, 晓伟 周 and Stuart D. Bale
{"title":"Spectral Characteristics of Fundamental–Harmonic Pairs of Interplanetary Type III Radio Bursts Observed by PSP","authors":"Ling Chen, 玲 陈, Bing Ma, 兵 马, Dejin Wu, 德金 吴, Zongjun Ning, 宗军 宁, Xiaowei Zhou, 晓伟 周 and Stuart D. Bale","doi":"10.3847/2041-8213/ad89c2","DOIUrl":"https://doi.org/10.3847/2041-8213/ad89c2","url":null,"abstract":"Based on the observations by the Parker Solar Probe (PSP) during its encounter phases of approaching the Sun, I. C. Jebaraj et al. found that fundamental–harmonic (F-H) pairs constitute a majority of interplanetary (IP) type III radio bursts. In the present Letter, spectral characteristics of the IP F-H pairs are identified and analyzed further. The observations were made with the Radio Frequency Spectrometer (RFS) experiment on the PSP spacecraft in its encounter phase from the first to the ninth orbit as it traveled from 0.17 to 0.074 au from the Sun. The result shows that the occurrence rate of F-H pairs rises significantly with the rise in the number of IP type III radio bursts detected by the PSP or the enhancement in the time resolution of the RFS instrument. In particular, we compare the relationship between F and H spectral characteristics, such as the frequency-drift rate, emission intensity, relative bandwidth, duration, and fine structure. The results will be helpful for us to understand the physics underlying the generation and evolution of the IP F-H pairs as well as other IP type III radio bursts.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}