Kedron Silsbee, Brandon S. Hensley, Jamey R. Szalay, Petr Pokorný and Jeong-Gyu Kim
{"title":"A Rotational Disruption Crisis for Zodiacal Dust","authors":"Kedron Silsbee, Brandon S. Hensley, Jamey R. Szalay, Petr Pokorný and Jeong-Gyu Kim","doi":"10.3847/2041-8213/adc133","DOIUrl":"https://doi.org/10.3847/2041-8213/adc133","url":null,"abstract":"A systematic torque from anisotropic radiation can rapidly spin up irregular grains to the point of breakup. We apply the standard theory of rotational disruption from radiative torques to solar system grains, finding that grains with radii ∼0.03–3 μm at 1 au from the Sun are spun to the point of breakup on timescales ≲1 yr even when assuming them to have an unrealistically high tensile strength of pure meteoritic iron. Such a rapid disruption timescale is incompatible with both the abundance of micron-sized grains detected in the inner solar system and with the low production rate of β-meteoroids. We suggest the possibility that zodiacal grains have a strong propensity to attain rotational equilibrium at low angular velocity (a so-called low-J attractor) and that the efficacy of rotational disruption in the solar system—and likely elsewhere—has been greatly overestimated.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143736824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingxiao Luo, Lifu Zhang, Bing-Qiu Chen, Qiyuan Cheng, Boyang Guo, Jiao Li, Yanjun Guo, Jianping Xiong, Xiangcun Meng, Xuefei Chen, Zhengwei Liu and Zhanwen Han
{"title":"The Red Supergiant Progenitor of the Type II Supernova 2024abfl","authors":"Jingxiao Luo, Lifu Zhang, Bing-Qiu Chen, Qiyuan Cheng, Boyang Guo, Jiao Li, Yanjun Guo, Jianping Xiong, Xiangcun Meng, Xuefei Chen, Zhengwei Liu and Zhanwen Han","doi":"10.3847/2041-8213/adbf0b","DOIUrl":"https://doi.org/10.3847/2041-8213/adbf0b","url":null,"abstract":"Linkage between core-collapse supernovae and their progenitors is not fully understood and ongoing effort of searching and identifying the progenitors is needed. SN 2024abfl is a recent Type II supernova that exploded in the nearby star-bursting galaxy NGC 2146, which is also the host galaxy of SN 2018zd. From archival Hubble Space Telescope data, we have found a red source (mF814W ∼ 25) near the location (angular distance ≤0 2) of SN 2024abfl before its explosion. With F814W and F606W photometry, we found that the properties of this source matched a typical red supergiant (RSG) moderately reddened by interstellar dust at the distance of the host galaxy. We conclude that the SN 2024abfl had an RSG progenitor with initial mass of 9 –12 M⊙.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143736826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoonsoo Kim, Elias R. Most, Andrei M. Beloborodov and Bart Ripperda
{"title":"Black Hole Pulsars and Monster Shocks as Outcomes of Black Hole–Neutron Star Mergers","authors":"Yoonsoo Kim, Elias R. Most, Andrei M. Beloborodov and Bart Ripperda","doi":"10.3847/2041-8213/adbff9","DOIUrl":"https://doi.org/10.3847/2041-8213/adbff9","url":null,"abstract":"The merger of a black hole (BH) and a neutron star (NS) in most cases is expected to leave no material around the remnant BH; therefore, such events are often considered as sources of gravitational waves without electromagnetic counterparts. However, a bright counterpart can emerge if the NS is strongly magnetized, as its external magnetosphere can experience radiative shocks and magnetic reconnection during/after the merger. We use magnetohydrodynamic simulations in the dynamical spacetime of a merging BH–NS binary to investigate its magnetospheric dynamics. We find that compressive waves excited in the magnetosphere develop into monster shocks as they propagate outward. After swallowing the NS, the BH acquires a magnetosphere that quickly evolves into a split-monopole configuration and then undergoes an exponential decay (balding), enabled by magnetic reconnection and also assisted by the ringdown of the remnant BH. This spinning BH drags the split monopole into rotation, forming a transient pulsar-like state. It emits a striped wind if the swallowed magnetic-dipole moment is inclined to the spin axis. We predict two types of transients from this scenario: (1) a fast radio burst emitted by the shocks as they expand to large radii; and (2) an X-ray/γ-ray burst emitted by the e± outflow heated by magnetic dissipation.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"102 4 Pt 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143736823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast Transients from Magnetic Disks around Nonspinning Collapsar Black Holes","authors":"Justin Bopp and Ore Gottlieb","doi":"10.3847/2041-8213/adbdcd","DOIUrl":"https://doi.org/10.3847/2041-8213/adbdcd","url":null,"abstract":"Most black holes (BHs) formed in collapsing stars have low spin, though some are expected to acquire a magnetic accretion disk during the collapse. While such BH disks can launch magnetically driven winds, their physics and observational signatures have remained unexplored. We present global 3D general relativistic magnetohydrodynamic simulations of collapsing stars that form slowly spinning BHs with accretion disks. As the disk transitions to a magnetically arrested state, it drives mildly relativistic, wobbling, collimated magnetic outflows through two mechanisms: steady outflows along vertical magnetic field lines (“Blandford–Payne jets”) and magnetic flux eruptions. With isotropic-equivalent energy of Eiso ≈ 1052 erg, exceeding that of relativistic jets from BHs with spin a ≲ 0.25, the disk outflows unbind the star, ultimately capping the final BH mass at MBH ≈ 4 M⊙. Once the outflows emerge from the star, they produce mildly relativistic shock breakout and cooling emission. Our cooling emission estimates suggest a bright near-ultraviolet and optical signal at absolute magnitude MAB ≈ −16 lasting for several days. This indicates that disk winds could be responsible for the first peak in the double-peaked light curves observed in Type Ib/c supernovae (SNe) or power another class of transients. The detection rate in the upcoming Rubin Observatory and ULTRASAT/UVEX will enable us to differentiate between competing models for the origin of the first SN peak and provide constraints on the physics and formation rate of accretion disks in core-collapse SNe.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143736822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Di Paolo, David P. Stevens, Manoj Joshi and Rob A. Hall
{"title":"Nonlinear and Nonmonotonic Effect of Ocean Tidal Mixing on Exoplanet Climates and Habitability","authors":"Maria Di Paolo, David P. Stevens, Manoj Joshi and Rob A. Hall","doi":"10.3847/2041-8213/adbca3","DOIUrl":"https://doi.org/10.3847/2041-8213/adbca3","url":null,"abstract":"Tides play an important role in the circulation and mean state of the Earth’s oceans through inducing significant mixing. On other planets, tidal forcings could be highly amplified compared to Earth, such as planets orbiting relatively close to low-mass host stars, or planets having massive and/or close moons. The former scenario is especially important as, due to their abundance and their observational advantages, low-mass stars offer the best chance of finding habitable planets through sheer numbers. By varying the magnitude of tidal forcing over several orders of magnitude in a coupled atmosphere–ocean global circulation climate model, we find that key climatic quantities, such as heat transport intensity and both surface and deep ocean temperature, change with tidal strength in a nonlinear and nonmonotonic manner. We find an optimum value of tidal mixing, approximately 100 times that of Earth’s oceans, which minimizes climatic thermal gradients across the planet. In particular, we show that such planets are habitable for stellar flux values at which oceans with weaker or stronger tidal mixing freeze globally, suggesting an important role for ocean tidal mixing in planetary habitability.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mei Ai, Ming Zhu, Nai-ping Yu, Jin-long Xu, Xiao-lan Liu, Yingjie Jing, Qian Jiao, Yao Liu, Chuan-peng Zhang, Jie Wang and Peng Jiang
{"title":"Formation of the Dark Matter–Deficient S0 Galaxy NGC 4111 under the Tidal Interactions","authors":"Mei Ai, Ming Zhu, Nai-ping Yu, Jin-long Xu, Xiao-lan Liu, Yingjie Jing, Qian Jiao, Yao Liu, Chuan-peng Zhang, Jie Wang and Peng Jiang","doi":"10.3847/2041-8213/adbeee","DOIUrl":"https://doi.org/10.3847/2041-8213/adbeee","url":null,"abstract":"We present high-sensitivity and large-scale atomic hydrogen (H i) observations toward lenticular (S0) galaxy NGC 4111 using the Five-hundred-meter Aperture Spherical Radio Telescope. The column-density map shows that NGC 4111 and seven other different types of galaxies share a huge H i gas complex. The data also suggest that NGC 4111 is interacting with seven galaxies. Moreover, we identified a rotating gas disk associated with NGC 4111 from the H i complex. Still, the H i disk rotation direction has deviated from its stellar disk by about 34 2, indicating that the NGC 4111 galaxy is undergoing a transition from a spiral galaxy to an S0 galaxy by the tidal interactions. The obtained dark matter to stellar mass ratio of NGC 4111 is 3.1 ± 0.7, which is lower than the average value of the local Universe, implying that the interactions may strip its dark matter. Our results suggest that in a galaxy group environment, tidal interactions have a significant effect on galaxy features.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143723326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingmei Wang, Yi Bi, Hongfei Liang, JiaYan Yang and Liufan Gong
{"title":"Moving Plasma Structures and Possible Driving Mechanisms of Solar Microflares Observed with High-resolution Coronal Imaging","authors":"Qingmei Wang, Yi Bi, Hongfei Liang, JiaYan Yang and Liufan Gong","doi":"10.3847/2041-8213/adbf96","DOIUrl":"https://doi.org/10.3847/2041-8213/adbf96","url":null,"abstract":"Solar microflares are ubiquitous in the solar corona, yet their driving mechanisms remain a subject of ongoing debate. Using high-resolution coronal observations from the Solar Orbiter’s Extreme Ultraviolet Imager (EUI), we identified about a dozen distinct moving plasma structures (hereafter, “ tiny ejections”) originating from the centers of three homologous microflares out of four successive events. These tiny ejections propagate roughly perpendicular to the flaring loops. They often originate as dot-like structures with a length scale of approximately 103 km. While these initial dot-like shapes are observable in EUI images, they remain undetectable in the images captured by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. As they propagate, these dot-like structures consistently evolve into loop-like formations, possibly due to the heating of the surrounding magnetic field. Rather than being generated by a series of flux rope eruptions, the tiny ejections appear to result from small-angle magnetic reconnections within a bipolar field. Thus, the microflares associated with these ejections may be driven by magnetic reconnection within braided fields, a process similar to the proposed nanoflare mechanism and distinct from the standard large-scale flare model.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143723331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanming Wang, 远明 王, Pavan A. Uttarkar, Ryan M. Shannon, Yu Wing Joshua Lee, Dougal Dobie, Ziteng Wang, Keith W. Bannister, Manisha Caleb, Adam T. Deller, Marcin Glowacki, Joscha N. Jahns-Schindler, Tara Murphy, Reshma Anna-Thomas, N. D. R. Bhat, Xinping Deng, Vivek Gupta, Akhil Jaini, Clancy W. James and John Tuthill
{"title":"The Discovery of a 41 s Radio Pulsar PSR J0311+1402 with ASKAP","authors":"Yuanming Wang, 远明 王, Pavan A. Uttarkar, Ryan M. Shannon, Yu Wing Joshua Lee, Dougal Dobie, Ziteng Wang, Keith W. Bannister, Manisha Caleb, Adam T. Deller, Marcin Glowacki, Joscha N. Jahns-Schindler, Tara Murphy, Reshma Anna-Thomas, N. D. R. Bhat, Xinping Deng, Vivek Gupta, Akhil Jaini, Clancy W. James and John Tuthill","doi":"10.3847/2041-8213/adbe61","DOIUrl":"https://doi.org/10.3847/2041-8213/adbe61","url":null,"abstract":"The emerging population of long-period radio transients (LPTs) shows both similarities and differences with normal pulsars. A key difference is that their radio emission is too bright to be powered solely by rotational energy. Various models have been proposed (including both white dwarf or neutron star origins), and their nature remains uncertain. Known LPTs have minutes-to-hours-long spin periods, while normal pulsars have periods ranging from milliseconds to seconds. Here, we report the discovery of PSR J0311+1402, an object with an intermediate spin period of 41 s, bridging the gap between LPTs and normal pulsars. PSR J0311+1402 exhibits low linear (∼25%) and circular polarization (∼5%) and a relatively steep spectral index (∼ −2.3), features similar to normal pulsars. However, its observed spin-down properties place it below the pulsar death line, where pair production and thus radio emission are expected to cease. The discovery of PSR J0311+1402 suggests the existence of a previously undetected population within this intermediate period range, presumably missed due to selection biases in traditional pulsar search methods. Finding more such objects is important to fill the current gap in neutron star spin periods, improving our understanding of the relationships among rotation-powered pulsars and LPTs.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative Exploration of the Similarity of Gamma-Ray Pulsar Light Curves","authors":"C. R. García and Diego F. Torres","doi":"10.3847/2041-8213/adbf0f","DOIUrl":"https://doi.org/10.3847/2041-8213/adbf0f","url":null,"abstract":"We introduce and apply a methodology based on dynamic time warping to compare the whole set of gamma-ray light curves reported in the Third Fermi-Large Area Telescope Pulsar Catalogue. Our method allows us to quantitatively measure the degree of global similarity between two light curves beyond comparing indicators such as how many peaks there are, what their separation is, and their width and height. Once the morphology of the light curve is showcased via background subtraction, min-max scaler normalization and rotations are considered to take into account that phase 0 is arbitrary, and the level of detail with which light curves of different pulsars appear is revealed. In many cases, their similarity is striking and occurs disregarding any other timing, physical, or spectral property. In particular, some millisecond pulsars and young pulsars share detailed light-curve morphology.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143723330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-pulse-based Interstellar Scintillation Studies of RRATs","authors":"Zi-wei Wu, Wei-wei Zhu, Zi-yao Fang, Qiu-yang Fu, Ji-guang Lu, Ling-qi Meng, Chen-Chen Miao, Xue-li Miao, Jia-rui Niu, Rukeya Rejiefu, Xun Shi, Chao Wang, Meng-yao Xue, Mao Yuan, You-ling Yue, Chun-feng Zhang, Zhen Zhang, Shi-jun Dang and Yu-lan Liu","doi":"10.3847/2041-8213/adc25c","DOIUrl":"https://doi.org/10.3847/2041-8213/adc25c","url":null,"abstract":"The nature of irregularly spaced pulses of rotating radio transients (RRATs) complicates interstellar scintillation studies. In this Letter, we report the primary scintillation parameters of a sample of RRATs using pairwise correlations of pulse spectra. Moreover, from the measured scintillation velocities, we constrain their transverse velocities. We also find a reduced modulation index, m = 0.13 ± 0.01, for RRAT J1538+2345. Several possible explanations are discussed. Furthermore, the single-pulse-based interstellar scintillation technique is applicable to other pulsar populations, including nulling pulsars and those with short scintillation timescales, and fast radio bursts.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"183 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143723332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}