Gabriella Allegri, Martin Poms, Nadia Zürcher, Véronique Rüfenacht, Nicole Rimann, Déborah Mathis, Beat Thöny, Matthias Gautschi, Ralf A Husain, Daniela Karall, Karolina Orchel-Szastak, Francesco Porta, Dominique Roland, Barbara Siri, Carlo Dionisi-Vici, René Santer, Johannes Häberle
{"title":"Characterization and treatment monitoring of ureagenesis disorders using stable isotopes.","authors":"Gabriella Allegri, Martin Poms, Nadia Zürcher, Véronique Rüfenacht, Nicole Rimann, Déborah Mathis, Beat Thöny, Matthias Gautschi, Ralf A Husain, Daniela Karall, Karolina Orchel-Szastak, Francesco Porta, Dominique Roland, Barbara Siri, Carlo Dionisi-Vici, René Santer, Johannes Häberle","doi":"10.1038/s44324-025-00051-8","DOIUrl":"10.1038/s44324-025-00051-8","url":null,"abstract":"<p><p>Urea cycle disorders (UCDs) are a group of rare conditions, possibly life-threatening and without definitive cure besides liver transplantation. Traditional biochemical analyses/biomarkers cannot reliably determine changes in the UC-function from baseline to post-intervention. We describe a UHPLC-HRMS method to assess ureagenesis in plasma and dried blood spots for [<sup>15</sup>N]urea and [<sup>15</sup>N]amino acids, using [<sup>15</sup>N]ammonium chloride as tracer. [<sup>15</sup>N]enrichment of urea and amino acids was studied in controls (<i>n</i> = 22) and patients (<i>n</i> = 59), the latter showing characteristic ureagenesis variations according to their underlying metabolic defect. Follow-up of therapies was successful, as we observed restoration of [<sup>15</sup>N]urea production and lowering of [<sup>15</sup>N]glutamine. There were no adverse events, and only minimal amounts of tracer and samples required with a short sample preparation time and analysis. Thus, the method proved to be safe and efficient to monitor UCD patients of variable severity pre- and post-therapy, being suitable as physiological endpoint for development of therapies.</p>","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":"3 1","pages":"19"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12055570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144039698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick H Andrews, James C Zimring, Coleen A McNamara
{"title":"Clinical associations and potential cellular mechanisms linking G6PD deficiency and atherosclerotic cardiovascular disease.","authors":"Patrick H Andrews, James C Zimring, Coleen A McNamara","doi":"10.1038/s44324-025-00061-6","DOIUrl":"10.1038/s44324-025-00061-6","url":null,"abstract":"<p><p>Glucose 6-phosphate dehydrogenase deficiency (G6PD-d) is the most common enzymopathy in the world, occurring in 5-8% of the global population (half a billion people). Recent epidemiological evidence suggests that G6PD-d may be associated with increased cardiovascular disease (CVD). Atherosclerosis is the dominant cause of CVD, including myocardial infarction, heart failure, stroke, and peripheral artery disease. Atherosclerosis, in turn, is a chronic inflammatory disease, fueled by oxidized lipids and influenced by various immune and nonimmune cells including vascular endothelial and smooth muscle cells, monocytes and macrophages, T cells, B cells, and red blood cells. Here, we review the existing epidemiological evidence supporting a role for G6PD-d in CVD in humans and explore the data on potential cellular mechanisms by which G6PD-d may exacerbate atherosclerosis.</p>","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":"3 1","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144002902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Frédéric Gachon, Elisabetta Bugianesi, Gabriele Castelnuovo, Henrik Oster, Julie S Pendergast, Sara Montagnese
{"title":"Potential bidirectional communication between the liver and the central circadian clock in MASLD.","authors":"Frédéric Gachon, Elisabetta Bugianesi, Gabriele Castelnuovo, Henrik Oster, Julie S Pendergast, Sara Montagnese","doi":"10.1038/s44324-025-00058-1","DOIUrl":"10.1038/s44324-025-00058-1","url":null,"abstract":"<p><p>Most aspects of physiology and behaviour fluctuate every 24 h in mammals. These circadian rhythms are orchestrated by an autonomous central clock located in the suprachiasmatic nuclei that coordinates the timing of cellular clocks in tissues throughout the body. The critical role of this circadian system is emphasized by increasing evidence associating disruption of circadian rhythms with diverse pathologies. Accordingly, mounting evidence suggests a bidirectional relationship where disruption of rhythms by circadian misalignment may contribute to liver diseases while liver diseases alter the central clock and circadian rhythms in other tissues. Therefore, liver pathophysiology may broadly impact the circadian system and may provide a mechanistic framework for understanding and targeting metabolic diseases and adjust metabolic setpoints.</p>","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":"3 1","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144057201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jomanah Bakhsh, Sarah-Jeanne Salvy, Alaina P. Vidmar
{"title":"Intermittent fasting as a treatment for obesity in young people: a scoping review","authors":"Jomanah Bakhsh, Sarah-Jeanne Salvy, Alaina P. Vidmar","doi":"10.1038/s44324-024-00041-2","DOIUrl":"10.1038/s44324-024-00041-2","url":null,"abstract":"Intermittent fasting focuses on the timing of eating rather than diet quality or energy intake, with evidence supporting its effects on weight loss and improvements in cardiometabolic outcomes in adults with obesity. However, there is limited evidence for its feasibility and efficacy in young people. To address this, a scoping review was conducted to examine intermittent fasting regimens in individuals aged 10 to 25 for the treatment of obesity focusing on methodology, intervention parameters, outcomes, adherence, feasibility, and efficacy. Due to the paucity of evidence in this age group, to adequately assess feasibility and adherence, all published studies of intermittent fasting in this age category, regardless of weight status and treatment intention, were included in the review. The review included 34 studies (28 interventional studies and 6 observational studies) with 893 participants aged 12 to 25. Interventions varied with 9 studies in cohorts with obesity utilizing intermittent fasting as an obesity treatment. Thirteen studies utilized 8-h time-restricted eating. Primary outcomes included cardiometabolic risk factors (7/28), anthropometric measurements (7/28), body composition (5/28), muscular performance (4/28), feasibility (1/28), and others (4/28). All 9 studies conducted in young people with obesity reported some degree of weight loss, although the comparator groups varied significantly. This review underscores the various utilizations of intermittent fasting in this age group and highlights its potential in treating obesity. However, the findings emphasize the need for rigorous studies with standardized frameworks for feasibility to ensure comparability and determine intermittent fasting’s practicality in this age group depending on the treatment outcome of interest.","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":" ","pages":"1-19"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44324-024-00041-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sophie Lucic Fisher, G. Jean Campbell, Alistair Senior, Kim Bell-Anderson
{"title":"The effect of high-sugar feeding on rodent metabolic phenotype: a systematic review and meta-analysis","authors":"Sophie Lucic Fisher, G. Jean Campbell, Alistair Senior, Kim Bell-Anderson","doi":"10.1038/s44324-024-00043-0","DOIUrl":"10.1038/s44324-024-00043-0","url":null,"abstract":"Dietary sugar consumption has been linked to increased cardiometabolic disease risk, although it is unclear if this is independent of increases in body weight and adiposity. Additionally, many preclinical animal studies provide liquid sugar which more readily leads to excess consumption and weight gain, confounding any outcomes driven by high-sugar intake alone. To gain clarity on this, we conducted a systematic review and meta-analysis exclusively investigating the effect of isocaloric high-sugar, low-fat solid diet formulations containing fructose or sucrose, on cardiometabolic health in rodents. Overall, we found strong evidence that fructose and sucrose have effects on metabolic health, independent of body weight gain. High-sugar feeding, with fructose in particular, altered liver phenotype; ALT (d = 1.08; 0.66, 1.5), triglyceride content (d = 0.52; 0.25, 0.78), cholesterol (d = 0.59; 0.16, 1.03) and liver mass (d = 0.93; 0.37, 1.48), and glucose tolerance; fasting glucose (d = 0.60; 0.18, 1.01) and fasting insulin (d = 0.42; 0.07, 0.77) but not body weight or energy intake. Our review also highlights the lack of data reported on adiposity and in female rodents. This is the first meta-analysis to synthesise all current rodent solid diet high-sugar studies, while adjusting them for confounders (fat content, time spent on diet and age started on diet) and suggests that high-sugar dietary intake and composition alters metabolic health of mice regardless of weight gain.","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":" ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44324-024-00043-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian N. Cramer, František Hubálek, Christian Lehn Brand, Hans Helleberg, Peter Kurtzhals, Jeppe Sturis
{"title":"Chain splitting of insulin: an underlying mechanism of insulin resistance?","authors":"Christian N. Cramer, František Hubálek, Christian Lehn Brand, Hans Helleberg, Peter Kurtzhals, Jeppe Sturis","doi":"10.1038/s44324-024-00042-1","DOIUrl":"10.1038/s44324-024-00042-1","url":null,"abstract":"Despite decades of intense research, the mechanisms underlying insulin resistance are still poorly understood. What if one of the major causes of insulin resistance is not related to defects in the target tissues and/or insulin receptor signaling, but rather to a reduced survival of endogenously secreted insulin on its way to activating the receptor on the cell surface of the target tissues? Here, we present data and lay out arguments in support of this novel hypothesis, which is fundamentally different from the common view that insulin resistance is caused by the body’s cells becoming less sensitive to insulin.","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":" ","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44324-024-00042-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Too old for healthy aging? Exploring age limits of longevity treatments","authors":"Prerana Shrikant Chaudhari, Maria A. Ermolaeva","doi":"10.1038/s44324-024-00040-3","DOIUrl":"10.1038/s44324-024-00040-3","url":null,"abstract":"It is well documented that aging elicits metabolic failures, while poor metabolism contributes to accelerated aging. Metabolism in general, and energy metabolism in particular are also effective entry points for interventions that extend lifespan and improve organ function during aging. In this review, we discuss common metabolic remedies for healthy aging from the angle of their potential age-specificity. We demonstrate that some well-known metabolic treatments are mostly effective in young and middle-aged organisms, while others maintain high efficacy independently of age. The mechanistic basis of presence or lack of the age limitations is laid out and discussed.","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44324-024-00040-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SMRT-depleted conventional DCs maintain inflammation despite lower glycolysis via mTOR signalling and succinate oxidation","authors":"Kaushik Sen, Rashmirekha Pati, Gyan Prakash Mishra, Subhasish Prusty, Sourya Prakash Nayak, Archana Tripathy, Shweta Chaudhary, Atimukta Jha, Arunita Patra, Priti Meena, Shaktiprasad Mishra, Ranjan Kumar Nanda, Alok Kumar Mantri, Bhawna Gupta, Sunil K. Raghav","doi":"10.1038/s44324-024-00034-1","DOIUrl":"10.1038/s44324-024-00034-1","url":null,"abstract":"Inflammatory diseases implicate a synchronised immune-metabolic rewiring to maintain homeostasis. The regulatory mechanisms governing the transcriptional control of immune-centric metabolic adjustments in dendritic cells (DCs) remains elusive. Recently we reported that Ncor2 (SMRT) loss of function in DCs potentiates strong inflammation. We found that SMRT depletion in DCs triggers a metabolic shift resulting in sustained and strong inflammation despite reduced glycolysis. This is in contrast to the widely accepted notion that glycolytic pathway activation is essential for inducing inflammation. Downregulation of mTOR emerged as a pivotal factor in attenuating the glycolytic rate. Significant metabolic alterations led to rewiring of the TCA-cycle by triggering anaplerotic glutamine catabolism and promoting succinate oxidation, thereby sustaining the inflammatory potential. Simultaneous treatment with succinate transport inhibitor DEBM and mTOR inducer Mhy1485 remarkably suppressed inflammation ex vivo and in vivo. Our findings also depicted an inverse correlation between SMRT levels with human autoimmune diseases.","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":" ","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44324-024-00034-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helena Borland Madsen, Jon Ambæk Durhuus, Ove Andersen, Per thor Straten, Anne Rahbech, Claus Desler
{"title":"Mitochondrial dysfunction in acute and post-acute phases of COVID-19 and risk of non-communicable diseases","authors":"Helena Borland Madsen, Jon Ambæk Durhuus, Ove Andersen, Per thor Straten, Anne Rahbech, Claus Desler","doi":"10.1038/s44324-024-00038-x","DOIUrl":"10.1038/s44324-024-00038-x","url":null,"abstract":"The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in widespread morbidity and mortality, with a significant portion of the affected population experiencing long-term health complications. This review explores the mechanisms of mitochondrial dysfunction in both the acute and post-acute phases of COVID-19, highlighting its impact on various organs and its potential role in the development of non-communicable diseases (NCDs). We discuss how SARS-CoV-2 directly affects mitochondrial function and the role of the virus-induced immune response in exacerbating mitochondrial impairment. This review highlights the critical role of mitochondria in COVID-19 pathogenesis and the importance of addressing mitochondrial health to mitigate acute and chronic effects of the disease.","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":" ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44324-024-00038-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human adipose depots’ diverse functions and dysregulations during cardiometabolic disease","authors":"Andreas Kraag Ziegler, Camilla Scheele","doi":"10.1038/s44324-024-00036-z","DOIUrl":"10.1038/s44324-024-00036-z","url":null,"abstract":"Adipose tissue depots develop specific functions in a location dependent manner. In humans, this for example includes thermogenic capacity in the brown adipose supraclavicular, deep neck and perirenal depots, healthy lipid storage primarily in the gluteofemoral subcutaneous depot, and immunogenic support in the visceral omental depot. These distinct functions are at some point programmed into adipose progenitor cells, which retain some of the phenotype from the depot they originated from upon isolation and differentiation in vitro. Cardiometabolic diseases associate with body fat distribution, with an accumulation of lipids in the visceral depot accompanied by low grade inflammation and insulin resistance as a typical phenotype. However, well-functioning subcutaneous adipose tissue and brown adipose tissue contribute to a metabolically healthy phenotype, and it is therefore worth understanding the function and regulation of these adipocytes. In this review, we will discuss the dysregulations in distinct human adipose tissue depots associated with cardiometabolic disease, some of the consequences this has on whole body metabolism, and how depot-specific dysregulations might affect other adipose depots to progress a cardiometabolic disease condition.","PeriodicalId":501710,"journal":{"name":"npj Metabolic Health and Disease","volume":" ","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44324-024-00036-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}