Smart Molecules最新文献

筛选
英文 中文
Smart DNA sensors-based molecular identification for cancer subtyping 基于智能 DNA 传感器的癌症亚型分子识别技术
Smart Molecules Pub Date : 2023-12-12 DOI: 10.1002/smo.20230020
Yingying Gao, Mengyi Xiong, Chaonan Gong, Bo Wang, Longwei Bai, Xiao-Bing Zhang
{"title":"Smart DNA sensors-based molecular identification for cancer subtyping","authors":"Yingying Gao, Mengyi Xiong, Chaonan Gong, Bo Wang, Longwei Bai, Xiao-Bing Zhang","doi":"10.1002/smo.20230020","DOIUrl":"https://doi.org/10.1002/smo.20230020","url":null,"abstract":"Molecular subtyping of cancer can greatly help to understand the development of disease and predict tumor behavior. Exploring detection methods for precise subtyping is appealing to prognosis and personalized therapy. During the past decades, DNA-based biosensors have exhibited great potential in cancer diagnosis due to their structural programmability and functional diversity. Despite the encouraging progress that has been made, there remains an issue in improving the accuracy and sensitivity of cancer subtyping due to the complex process of disease, especially in preclinical or clinical applications. To accelerate the development of DNA sensors in the identification of cancer subtypes, in this review, we summarized their advances in molecular subtyping by analyzing the heterogeneity in categories and levels of biomarkers between cancer subtypes. The strategies toward genomic and proteomic heterogeneity in cells or on the cell surface, as well as the cancer excretions including extracellular vesicles (EVs) and microRNA (miRNAs) in serum, are summarized. Current challenges and the opportunities of DNA-based sensors in this field are also discussed.","PeriodicalId":501601,"journal":{"name":"Smart Molecules","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138574385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in low-swellable polymer-based smart photonic crystal sensors 低膨胀聚合物智能光子晶体传感器的最新进展
Smart Molecules Pub Date : 2023-12-07 DOI: 10.1002/smo.20230018
Yong Qi, Shufen Zhang
{"title":"Recent progress in low-swellable polymer-based smart photonic crystal sensors","authors":"Yong Qi, Shufen Zhang","doi":"10.1002/smo.20230018","DOIUrl":"https://doi.org/10.1002/smo.20230018","url":null,"abstract":"Low-swelling polymers (LSPs) generally refer to materials with a low solvent absorption ratio or volume expansion rate at swelling equilibrium. LSPs with exceptional responsiveness could be upgraded to smart sensors with structural color self-reporting by bridging photonic crystals (PCs). Based on the regulation of swelling to effective refractive index, lattice spacing, the order-disorder arrangement of nanostructures, and incident/detection angle, the structural color feedback of smart photonic crystal sensors (SPCSs) can quantitatively and visually reveal the stimulus, which greatly promotes the interdisciplinary development of nanophotonic technology in the fields of chemical engineering, materials science, engineering mechanics, biomedicine, environmental engineering, etc. Herein, to clarify the role of the photonic structures and polymer molecules in high-performance SPCSs, LSP-based SPCSs are summarized and discussed, including general swelling mechanisms, color change strategies, structural design, and typical functional applications. It aims to figure out the combination rule between PC structures and LSPs, optimize the design of PC structures, and expound the corresponding structural color sensing mechanisms, inspiring the fabrication of next-generation SPCSs. Finally, perspectives on future structural design and sensing applications are also presented. It is believed that SPCSs are multifunctional nanophotonic tools for the interdisciplinary development of numerous engineering fields in the future.","PeriodicalId":501601,"journal":{"name":"Smart Molecules","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138548636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-acceptor engineering of donor-acceptor type molecules for all-round boosting anti-tumor phototherapy 供体-受体型分子的双受体工程,全面提升抗肿瘤光疗效果
Smart Molecules Pub Date : 2023-11-23 DOI: 10.1002/smo.20230014
Hua Gu, Wen Sun, Jianjun Du, Jiangli Fan, Xiaojun Peng
{"title":"Dual-acceptor engineering of donor-acceptor type molecules for all-round boosting anti-tumor phototherapy","authors":"Hua Gu, Wen Sun, Jianjun Du, Jiangli Fan, Xiaojun Peng","doi":"10.1002/smo.20230014","DOIUrl":"https://doi.org/10.1002/smo.20230014","url":null,"abstract":"The integration of robust photon-absorption capacity, high reactive oxygen species yields and photothermal conversion efficiency (PCE) into a single phototheranostic nano-agents is ideal but rarely reported. This study employed a dual-acceptor engineering strategy utilizing isoindigo and selenium-substituted [1,2,5]thiadiazolo[3,4-<i>c</i>]pyridine to augment the molar extinction coefficient and spin-orbit coupling effect, respectively, resulting in a substantial enhancement of photon-absorption ability and non-radiative decay energy-release process of donor-acceptor type phototherapy molecules. As the optimal phototherapy agent, IID-PSe exhibited a high molar extinction coefficient two times that of photosensitizer, excellent <sup>1</sup>O<sub>2</sub> yield (15%) and PCE (34%), exhibiting great potential for phototherapy. After encapsulating with DSPE-PEG2000, IID-PSe NPs showed excellent anti-tumor phototherapy ability both in vitro and in vivo. This work provides an effective idea for designing high-performance photosensitive dyes with high efficiency phototherapy output.","PeriodicalId":501601,"journal":{"name":"Smart Molecules","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138554356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[2]Biphenyl-extended pillar[6]arene functionalized silver nanoparticles for catalysis and label-free detection 用于催化和无标记检测的[2]联苯延伸柱[6]炔功能化银纳米粒子
Smart Molecules Pub Date : 2023-11-14 DOI: 10.1002/smo.20230016
Dongxia Li, Gengxin Wu, Xin Wang, Jia-Rui Wu, Ying-Wei Yang
{"title":"[2]Biphenyl-extended pillar[6]arene functionalized silver nanoparticles for catalysis and label-free detection","authors":"Dongxia Li, Gengxin Wu, Xin Wang, Jia-Rui Wu, Ying-Wei Yang","doi":"10.1002/smo.20230016","DOIUrl":"https://doi.org/10.1002/smo.20230016","url":null,"abstract":"Synthetic macrocycles have served as principal tools for supramolecular chemistry since their establishment, and the investigation of macrocycles-aided organic-inorganic hybrid nanomaterials has also attracted broad interest in chemistry and material communities during the past decade owing to their widespread applications in optical sensing, catalytic degradation, biomedicine, and other related fields. Herein, a new class of silver nanoparticles (AgNPs) modified by anionic water-soluble [2]biphenyl-extended pillar[6]arene (WBpP6), namely WBpP6-AgNPs, is designed and synthesized through a facile one-pot method. WBpP6-AgNPs with good dispersion and stability exhibit efficient catalytic properties toward the hydrogenation of a series of aromatic nitro compounds and also show good performance in label-free detection toward diquat.","PeriodicalId":501601,"journal":{"name":"Smart Molecules","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138548634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信