The International Journal of Robotics Research最新文献

筛选
英文 中文
Foundations of spatial perception for robotics: Hierarchical representations and real-time systems 机器人空间感知基础:分层表示和实时系统
The International Journal of Robotics Research Pub Date : 2024-02-12 DOI: 10.1177/02783649241229725
Nathan Hughes, Yun Chang, Siyi Hu, Rajat Talak, Rumaia Abdulhai, Jared Strader, Luca Carlone
{"title":"Foundations of spatial perception for robotics: Hierarchical representations and real-time systems","authors":"Nathan Hughes, Yun Chang, Siyi Hu, Rajat Talak, Rumaia Abdulhai, Jared Strader, Luca Carlone","doi":"10.1177/02783649241229725","DOIUrl":"https://doi.org/10.1177/02783649241229725","url":null,"abstract":"3D spatial perception is the problem of building and maintaining an actionable and persistent representation of the environment in real-time using sensor data and prior knowledge. Despite the fast-paced progress in robot perception, most existing methods either build purely geometric maps (as in traditional SLAM) or “flat” metric-semantic maps that do not scale to large environments or large dictionaries of semantic labels. The first part of this paper is concerned with representations: we show that scalable representations for spatial perception need to be hierarchical in nature. Hierarchical representations are efficient to store, and lead to layered graphs with small treewidth, which enable provably efficient inference. We then introduce an example of hierarchical representation for indoor environments, namely a 3D scene graph, and discuss its structure and properties. The second part of the paper focuses on algorithms to incrementally construct a 3D scene graph as the robot explores the environment. Our algorithms combine 3D geometry (e.g., to cluster the free space into a graph of places), topology (to cluster the places into rooms), and geometric deep learning (e.g., to classify the type of rooms the robot is moving across). The third part of the paper focuses on algorithms to maintain and correct 3D scene graphs during long-term operation. We propose hierarchical descriptors for loop closure detection and describe how to correct a scene graph in response to loop closures, by solving a 3D scene graph optimization problem. We conclude the paper by combining the proposed perception algorithms into Hydra, a real-time spatial perception system that builds a 3D scene graph from visual-inertial data in real-time. We showcase Hydra’s performance in photo-realistic simulations and real data collected by a Clearpath Jackal robots and a Unitree A1 robot. We release an open-source implementation of Hydra at https://github.com/MIT-SPARK/Hydra .","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A three degrees of freedom switchable impedance myoelectric prosthetic wrist 三自由度可切换阻抗肌电假肢手腕
The International Journal of Robotics Research Pub Date : 2024-02-09 DOI: 10.1177/02783649241231298
P. Capsi-Morales, Cristina Piazza, G. Grioli, A. Bicchi, M. G. Catalano
{"title":"A three degrees of freedom switchable impedance myoelectric prosthetic wrist","authors":"P. Capsi-Morales, Cristina Piazza, G. Grioli, A. Bicchi, M. G. Catalano","doi":"10.1177/02783649241231298","DOIUrl":"https://doi.org/10.1177/02783649241231298","url":null,"abstract":"Wrist mobility contributes significantly to the execution of upper limb motor tasks. Despite this, current prosthetic wrists are far less advanced than other artificial joints. Typically, prosthetic wrists offer limited degrees of freedom, if any, which forces users to execute compensatory movements during task performance. This addition increases weight and complexity, two unwelcome factors in upper limb prostheses. This article presents the design of a 3-degree-of-freedom friction-lockable prosthetic wrist actuated by a single motor. The design features adaptable behavior when unlocked, promoting a gentle interaction with the environment, and enables users to adjust the hand configuration during pre-grasping phases. The proposed system was tested, combined with a hand prosthesis, and compared to a commercial rotational wrist during the execution of functional movements. Experiments involved nine able-bodied subjects and one prosthesis user. Participants also performed the experiments with their biological wrist (the intact wrist for the prosthesis user) as a control. Results showed that the lockable wrist was used actively 20% more often than the commercial solution without compromising users’ execution time. Interaction tests reveal that compensatory movements are reduced when using the proposed design, resulting in closer resemblance to the control wrist’s performance. The average satisfaction and usability scores were significantly higher for the proposed wrist, indicating its potential acceptance. Finally, the system was validated in a set of activities of daily living performed by the prosthesis user. The study contributes to the development of more intuitive and adaptable prostheses that can improve the quality of life of amputees.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"43 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139850005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A three degrees of freedom switchable impedance myoelectric prosthetic wrist 三自由度可切换阻抗肌电假肢手腕
The International Journal of Robotics Research Pub Date : 2024-02-09 DOI: 10.1177/02783649241231298
P. Capsi-Morales, Cristina Piazza, G. Grioli, A. Bicchi, M. G. Catalano
{"title":"A three degrees of freedom switchable impedance myoelectric prosthetic wrist","authors":"P. Capsi-Morales, Cristina Piazza, G. Grioli, A. Bicchi, M. G. Catalano","doi":"10.1177/02783649241231298","DOIUrl":"https://doi.org/10.1177/02783649241231298","url":null,"abstract":"Wrist mobility contributes significantly to the execution of upper limb motor tasks. Despite this, current prosthetic wrists are far less advanced than other artificial joints. Typically, prosthetic wrists offer limited degrees of freedom, if any, which forces users to execute compensatory movements during task performance. This addition increases weight and complexity, two unwelcome factors in upper limb prostheses. This article presents the design of a 3-degree-of-freedom friction-lockable prosthetic wrist actuated by a single motor. The design features adaptable behavior when unlocked, promoting a gentle interaction with the environment, and enables users to adjust the hand configuration during pre-grasping phases. The proposed system was tested, combined with a hand prosthesis, and compared to a commercial rotational wrist during the execution of functional movements. Experiments involved nine able-bodied subjects and one prosthesis user. Participants also performed the experiments with their biological wrist (the intact wrist for the prosthesis user) as a control. Results showed that the lockable wrist was used actively 20% more often than the commercial solution without compromising users’ execution time. Interaction tests reveal that compensatory movements are reduced when using the proposed design, resulting in closer resemblance to the control wrist’s performance. The average satisfaction and usability scores were significantly higher for the proposed wrist, indicating its potential acceptance. Finally, the system was validated in a set of activities of daily living performed by the prosthesis user. The study contributes to the development of more intuitive and adaptable prostheses that can improve the quality of life of amputees.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":" 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139790223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UTIL: An ultra-wideband time-difference-of-arrival indoor localization dataset UTIL:超宽带到达时差室内定位数据集
The International Journal of Robotics Research Pub Date : 2024-02-05 DOI: 10.1177/02783649241230640
Wenda Zhao, Abhishek Goudar, Xinyuan Qiao, Angela P. Schoellig
{"title":"UTIL: An ultra-wideband time-difference-of-arrival indoor localization dataset","authors":"Wenda Zhao, Abhishek Goudar, Xinyuan Qiao, Angela P. Schoellig","doi":"10.1177/02783649241230640","DOIUrl":"https://doi.org/10.1177/02783649241230640","url":null,"abstract":"Ultra-wideband (UWB) time-difference-of-arrival (TDOA)-based localization has emerged as a promising, low-cost, and scalable indoor localization solution, which is especially suited for multi-robot applications. However, there is a lack of public datasets to study and benchmark UWB TDOA positioning technology in cluttered indoor environments. We fill in this gap by presenting a comprehensive dataset using Decawave’s DWM1000 UWB modules. To characterize the UWB TDOA measurement performance under various line-of-sight (LOS) and non-line-of-sight (NLOS) conditions, we collected signal-to-noise ratio (SNR), power difference values, and raw UWB TDOA measurements during the identification experiments. We also conducted a cumulative total of around 150 min of real-world flight experiments on a customized quadrotor platform to benchmark the UWB TDOA localization performance for mobile robots. The quadrotor was commanded to fly with an average speed of 0.45 m/s in both obstacle-free and cluttered environments using four different UWB anchor constellations. Raw sensor data including UWB TDOA, inertial measurement unit (IMU), optical flow, time-of-flight (ToF) laser altitude, and millimeter-accurate ground truth robot poses were collected during the flights. The dataset and development kit are available at https://utiasdsl.github.io/util-uwb-dataset/ .","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"168 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bearing-angle approach for unknown target motion analysis based on visual measurements 基于视觉测量的未知目标运动分析方位角方法
The International Journal of Robotics Research Pub Date : 2024-02-03 DOI: 10.1177/02783649241229172
Zian Ning, Yin Zhang, Jianan Li, Zhang Chen, Shiyu Zhao
{"title":"A bearing-angle approach for unknown target motion analysis based on visual measurements","authors":"Zian Ning, Yin Zhang, Jianan Li, Zhang Chen, Shiyu Zhao","doi":"10.1177/02783649241229172","DOIUrl":"https://doi.org/10.1177/02783649241229172","url":null,"abstract":"Vision-based estimation of the motion of a moving target is usually formulated as a bearing-only estimation problem where the visual measurement is modeled as a bearing vector. Although the bearing-only approach has been studied for decades, a fundamental limitation of this approach is that it requires extra lateral motion of the observer to enhance the target’s observability. Unfortunately, the extra lateral motion conflicts with the desired motion of the observer in many tasks. It is well-known that, once a target has been detected in an image, a bounding box that surrounds the target can be obtained. Surprisingly, this common visual measurement especially its size information has not been well explored up to now. In this paper, we propose a new bearing-angle approach to estimate the motion of a target by modeling its image bounding box as bearing-angle measurements. Both theoretical analysis and experimental results show that this approach can significantly enhance the observability without relying on additional lateral motion of the observer. The benefit of the bearing-angle approach comes with no additional cost because a bounding box is a standard output of object detection algorithms. The approach simply exploits the information that has not been fully exploited in the past. No additional sensing devices or special detection algorithms are required.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pose-and-shear-based tactile servoing 基于姿势和剪切力的触觉伺服系统
The International Journal of Robotics Research Pub Date : 2024-01-30 DOI: 10.1177/02783649231225811
John Lloyd, Nathan F. Lepora
{"title":"Pose-and-shear-based tactile servoing","authors":"John Lloyd, Nathan F. Lepora","doi":"10.1177/02783649231225811","DOIUrl":"https://doi.org/10.1177/02783649231225811","url":null,"abstract":"Tactile servoing is an important technique because it enables robots to manipulate objects with precision and accuracy while adapting to changes in their environments in real-time. One approach for tactile servo control with high-resolution soft tactile sensors is to estimate the contact pose relative to an object surface using a convolutional neural network (CNN) for use as a feedback signal. In this paper, we investigate how the surface pose estimation model can be extended to include shear, and utilise these combined pose-and-shear models to develop a tactile robotic system that can be programmed for diverse non-prehensile manipulation tasks, such as object tracking, surface-following, single-arm object pushing and dual-arm object pushing. In doing this, two technical challenges had to be overcome. Firstly, the use of tactile data that includes shear-induced slippage can lead to error-prone estimates unsuitable for accurate control, and so we modified the CNN into a Gaussian-density neural network and used a discriminative Bayesian filter to improve the predictions with a state dynamics model that utilises the robot kinematics. Secondly, to achieve smooth robot motion in 3D space while interacting with objects, we used SE(3) velocity-based servo control, which required re-deriving the Bayesian filter update equations using Lie group theory, as many standard assumptions do not hold for state variables defined on non-Euclidean manifolds. In future, we believe that pose-and-shear-based tactile servoing will enable many object manipulation tasks and the fully-dexterous utilisation of multi-fingered tactile robot hands.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"111 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lazy incremental search for efficient replanning with bounded suboptimality guarantees 保证有界次优化的高效重新规划的懒惰增量搜索
The International Journal of Robotics Research Pub Date : 2024-01-30 DOI: 10.1177/02783649241227869
Jaein Lim, Mahdi Ghanei, R. Connor Lawson, Siddhartha Srinivasa, Panagiotis Tsiotras
{"title":"Lazy incremental search for efficient replanning with bounded suboptimality guarantees","authors":"Jaein Lim, Mahdi Ghanei, R. Connor Lawson, Siddhartha Srinivasa, Panagiotis Tsiotras","doi":"10.1177/02783649241227869","DOIUrl":"https://doi.org/10.1177/02783649241227869","url":null,"abstract":"We present a lazy incremental search algorithm, Lifelong-GLS (L-GLS), along with its bounded suboptimal version, Bounded L-GLS (B-LGLS) that combine the search efficiency of incremental search algorithms with the evaluation efficiency of lazy search algorithms for fast replanning in problem domains where edge evaluations are more expensive than vertex expansions. The proposed algorithms generalize Lifelong Planning A* (LPA*) and its bounded suboptimal version, Truncated LPA* (TLPA*), within the Generalized Lazy Search (GLS) framework, so as to restrict expensive edge evaluations only to the current shortest subpath when the cost-to-come inconsistencies are propagated during repair. We also present dynamic versions of the L-GLS and B-LGLS algorithms, called Generalized D* (GD*) and Bounded Generalized D* (B-GD*), respectively, for efficient replanning with non-stationary queries, designed specifically for navigation of mobile robots. We prove that the proposed algorithms are complete and correct in finding a solution that is guaranteed not to exceed the optimal solution cost by a user-chosen factor. Our numerical and experimental results support the claim that the proposed integration of the incremental and lazy search frameworks can help find solutions faster compared to the regular incremental or regular lazy search algorithms when the underlying graph representation changes often.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MARS-LVIG dataset: A multi-sensor aerial robots SLAM dataset for LiDAR-visual-inertial-GNSS fusion MARS-LVIG 数据集:用于激光雷达-视觉-惯性-GNSS 融合的多传感器空中机器人 SLAM 数据集
The International Journal of Robotics Research Pub Date : 2024-01-26 DOI: 10.1177/02783649241227968
Haotian Li, Yuying Zou, Nan Chen, Jiarong Lin, Xiyuan Liu, Wei Xu, Chunran Zheng, Rundong Li, Dongjiao He, Fanze Kong, Yixi Cai, Zheng Liu, Shunbo Zhou, Kaiwen Xue, Fu Zhang
{"title":"MARS-LVIG dataset: A multi-sensor aerial robots SLAM dataset for LiDAR-visual-inertial-GNSS fusion","authors":"Haotian Li, Yuying Zou, Nan Chen, Jiarong Lin, Xiyuan Liu, Wei Xu, Chunran Zheng, Rundong Li, Dongjiao He, Fanze Kong, Yixi Cai, Zheng Liu, Shunbo Zhou, Kaiwen Xue, Fu Zhang","doi":"10.1177/02783649241227968","DOIUrl":"https://doi.org/10.1177/02783649241227968","url":null,"abstract":"In recent years, advancements in Light Detection and Ranging (LiDAR) technology have made 3D LiDAR sensors more compact, lightweight, and affordable. This progress has spurred interest in integrating LiDAR with sensors such as Inertial Measurement Units (IMUs) and cameras for Simultaneous Localization and Mapping (SLAM) research. Public datasets covering different scenarios, platforms, and viewpoints are crucial for multi-sensor fusion SLAM studies, yet most focus on handheld or vehicle-mounted devices with front or 360-degree views. Data from aerial vehicles with downward-looking views is scarce, existing relevant datasets usually feature low altitudes and are mostly limited to small campus environments. To fill this gap, we introduce the Multi-sensor Aerial Robots SLAM dataset (MARS-LVIG dataset), providing unique aerial downward-looking LiDAR-Visual-Inertial-GNSS data with viewpoints from altitudes between 80 m and 130 m. The dataset not only offers new aspects to test and evaluate existing SLAM algorithms, but also brings new challenges which can facilitate researches and developments of more advanced SLAM algorithms. The MARS-LVIG dataset contains 21 sequences, acquired across diversified large-area environments including an aero-model airfield, an island, a rural town, and a valley. Within these sequences, the UAV has speeds varying from 3 m/s to 12 m/s, a scanning area reaching up to 577,000 m2, and the max path length of 7.148 km in a single flight. This dataset encapsulates data collected by a lightweight, hardware-synchronized sensor package that includes a solid-state 3D LiDAR, a global-shutter RGB camera, IMUs, and a raw message receiver of the Global Navigation Satellite System (GNSS). For algorithm evaluation, this dataset releases ground truth of both localization and mapping, which are acquired by on-board Real-time Kinematic (RTK) and DJI L1 (post-processed by its supporting software DJI Terra), respectively. The dataset can be downloaded from: https://mars.hku.hk/dataset.html .","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139593211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formalizing and evaluating requirements of perception systems for automated vehicles using spatio-temporal perception logic 利用时空感知逻辑对自动驾驶汽车感知系统的要求进行形式化和评估
The International Journal of Robotics Research Pub Date : 2024-01-25 DOI: 10.1177/02783649231223546
Mohammad Hekmatnejad, Bardh Hoxha, Jyotirmoy V. Deshmukh, Yezhou Yang, Georgios Fainekos
{"title":"Formalizing and evaluating requirements of perception systems for automated vehicles using spatio-temporal perception logic","authors":"Mohammad Hekmatnejad, Bardh Hoxha, Jyotirmoy V. Deshmukh, Yezhou Yang, Georgios Fainekos","doi":"10.1177/02783649231223546","DOIUrl":"https://doi.org/10.1177/02783649231223546","url":null,"abstract":"Automated vehicles (AV) heavily depend on robust perception systems. Current methods for evaluating vision systems focus mainly on frame-by-frame performance. Such evaluation methods appear to be inadequate in assessing the performance of a perception subsystem when used within an AV. In this paper, we present a logic—referred to as Spatio-Temporal Perception Logic (STPL)—which utilizes both spatial and temporal modalities. STPL enables reasoning over perception data using spatial and temporal operators. One major advantage of STPL is that it facilitates basic sanity checks on the functional performance of the perception system, even without ground truth data in some cases. We identify a fragment of STPL which is efficiently monitorable offline in polynomial time. Finally, we present a range of specifications for AV perception systems to highlight the types of requirements that can be expressed and analyzed through offline monitoring with STPL.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical and experimental investigation of variable contact forces on the rollers of a mecanum wheeled mobile robot 麦卡农轮式移动机器人滚筒上可变接触力的理论和实验研究
The International Journal of Robotics Research Pub Date : 2024-01-24 DOI: 10.1177/02783649241228607
Can Tezel, Gokhan Bayar
{"title":"Theoretical and experimental investigation of variable contact forces on the rollers of a mecanum wheeled mobile robot","authors":"Can Tezel, Gokhan Bayar","doi":"10.1177/02783649241228607","DOIUrl":"https://doi.org/10.1177/02783649241228607","url":null,"abstract":"The modeling structures of rollers, mecanum wheels, and mecanum wheeled mobile robots presented in the literature use single contact force assumption. This assumption may give good results in a simulation environment; however, it is not strong enough to reflect reality. To make an improvement, a new aspect of mecanum wheel model is proposed in this study. The model takes the variable roller contact forces into account and investigates their effects on the performance of motion of a mecanum wheeled mobile robot. It uses all points on each roller’s curved shape so that the slippage phenomena is also taken into consideration which makes it possible to get less position estimation errors in real-time operations. The modeling structure introduced aims to reflect reality both in simulation and real applications. A simulation environment is developed for this study. To make verification, an experimental setup including a four-mecanum-wheeled mobile robot, its mechanical and electrical hardware and software infrastructures, and a ground-truth system is designed and constructed. A Robot Operating System (ROS) based control system is created and integrated into the experimental system. Different types of reference trajectories including straight-line, square-shaped, Z-shaped, and wave(S)-shaped are used to test the performance of the model proposed in both simulation and experimental studies. The tests are also conducted using the model that involves single contact force assumption to make comparisons. The details of the variable contact forces model proposed, simulation environment developed, experimental setup built, simulation and experimental studies, their results, and comparisons are given in this paper.","PeriodicalId":501362,"journal":{"name":"The International Journal of Robotics Research","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信