Anna E. Lindell, Anne Griesshammer, Lena Michaelis, Dimitrios Papagiannidis, Hannah Ochner, Stephan Kamrad, Rui Guan, Sonja Blasche, Leandro Ventimiglia, Bini Ramachandran, Hilal Ozgur, Aleksej Zelezniak, Nonantzin Beristain-Covarrubias, Juan Carlos Yam-Puc, Indra Roux, Leon P. Barron, Alexandra K. Richardson, Maria Guerra Martin, Vladimir Benes, Nobuhiro Morone, James Thaventhiran, Tanmay A.M. Bharat, Mikhail Savitski, Lisa Maier, Kiran Raosaheb Patil
{"title":"Extensive PFAS accumulation by human gut bacteria","authors":"Anna E. Lindell, Anne Griesshammer, Lena Michaelis, Dimitrios Papagiannidis, Hannah Ochner, Stephan Kamrad, Rui Guan, Sonja Blasche, Leandro Ventimiglia, Bini Ramachandran, Hilal Ozgur, Aleksej Zelezniak, Nonantzin Beristain-Covarrubias, Juan Carlos Yam-Puc, Indra Roux, Leon P. Barron, Alexandra K. Richardson, Maria Guerra Martin, Vladimir Benes, Nobuhiro Morone, James Thaventhiran, Tanmay A.M. Bharat, Mikhail Savitski, Lisa Maier, Kiran Raosaheb Patil","doi":"10.1101/2024.09.17.613493","DOIUrl":"https://doi.org/10.1101/2024.09.17.613493","url":null,"abstract":"Per- and polyfluoroalkyl Substances (PFAS) - the so-called 'forever chemicals' - are a major cause of environmental and health concern due to their toxicity and long-term persistence[1,2]. Yet, no efficient mechanisms for their removal have been identified. Here we report bioaccumulation of PFAS by several gut bacterial species over a wide range of concentrations from nanomolar up to 500 μM. For bioaccumulating <em>Bacteroides uniformis</em>, a highly prevalent species, we estimate intracellular PFAS concentration in the mM range - above that of most native metabolites. Despite this high bioaccumulation, <em>B. uniformis</em> cells could grow appreciably up to 250 μM perfluorononanoic acid (PFNA) exposure. <em>Escherichia coli</em>, which accumulated PFAS to a much lesser extent, substantially increased PFAS bioaccumulation when lacking TolC efflux pump indicating trans-membrane transport in PFAS bioaccumulation. Electron microscopy and cryogenic Focused Ion Beam-Secondary Ion Mass-spectrometry revealed distinct morphological changes and intracellular localisation of PFNA aggregates. Bioaccumulation of PFAS and transmembrane transport is also evident in proteomics, metabolomics, thermal proteome profiling, and mutations following adaptive laboratory evolution. In an in vivo context, mice colonized with human gut bacteria showed, compared to germ-free controls or those colonized with low-bioaccumulating bacteria, higher PFNA levels in excreted feces. As the gut microbiota is a critical interface between exposure and human body, our results have implications for understanding and utilizing microbial contribution to PFAS clearance.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"54 48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shauna Richards, Davide Pagnossin, Paul Samson Buyugu, Oliver Manangwa, Furaha Mramba, Emmanuel Sindoya, Edith Paxton, Steve J. Torr, Ryan Ritchie, Giovanni E. Rossi, Lawrence Nnadozie Anyanwu, Michael Barrett, Liam J. Morrison, Harriet Auty
{"title":"Title Longitudinal Observational (single cohort) Study on the Causes of Trypanocide Failure in cases of African Animal Trypanosomosis in Cattle Near Wildlife Protected Areas of Northern Tanzania","authors":"Shauna Richards, Davide Pagnossin, Paul Samson Buyugu, Oliver Manangwa, Furaha Mramba, Emmanuel Sindoya, Edith Paxton, Steve J. Torr, Ryan Ritchie, Giovanni E. Rossi, Lawrence Nnadozie Anyanwu, Michael Barrett, Liam J. Morrison, Harriet Auty","doi":"10.1101/2024.09.17.613397","DOIUrl":"https://doi.org/10.1101/2024.09.17.613397","url":null,"abstract":"African animal trypanosomosis (AAT) in cattle is primarily managed through trypanocide administration and insecticide application. Trypanocides can be used for both treatment and prophylaxis, but failure is often reported; this may occur due to resistance, substandard drugs, or inappropriate administration. This study in Tanzania aims to quantify reasons for trypanocide failure. An observational year-long longitudinal study was conducted in high-risk AAT areas in Serengeti District from December 2019-October 2022. Purposive sampling targeted herds with high utilization of the prophylactic trypanocide isometamidium chloride (ISM). When a farmer administered a trypanocide (ISM, diminazine aceturate, homidium), the project veterinarian assessed administration and treatment outcomes were determined based on PCR results from blood samples. A multivariable mixed model was utilized to evaluate risk factors for prophylaxis failure. Quality analysis was performed on trypanocide samples using High Performance Liquid Chromatography. A total of 630 cattle from 21 farms were monitored for a year-long period. A total of 295 trypanocide administrations were reported, predominantly being ISM (56%) used for prophylaxis (87%). One-third of trypanocide administrations were not given adequately, and many trypanocides were given to animals that tested negative for trypanosome infections by PCR. Failures occurred in 7% (95% CI 3.0-14%) of curative treatments, and 44% (95% CI 35-42%) of prophylactic administrations. The brand of ISM was significantly associated with odds of prophylaxis failure (p = 0.011). On quality analysis, two ISM samples had no detectable ISM isomers, but the remainder of ISM and DA samples (n=46) fell within the range of acceptable levels. Drug counterfeiting, inadequate use of trypanocides, and resistance are all contributing to trypanocide failure, limiting effective AAT control and with implications for human disease risk. In order to curb trypanocide failure a multi-modal approach to managing the use of trypanocides is required to address all contributing factors.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gursonika Binepal, Emil Jurga, Duncan Carruthers-Lay, Sören Krüger, Sandra Zittermann, Jessica Minion, Mathew Diggle, David C. Alexander, Irene Martin, Vanessa Allen, John Parkinson, Scott D. Gray-Owen
{"title":"Phenotypic diversity and shared genomic determinants among isolates causing a large incidence of disseminated gonococcal infections in Canada","authors":"Gursonika Binepal, Emil Jurga, Duncan Carruthers-Lay, Sören Krüger, Sandra Zittermann, Jessica Minion, Mathew Diggle, David C. Alexander, Irene Martin, Vanessa Allen, John Parkinson, Scott D. Gray-Owen","doi":"10.1101/2024.09.08.611882","DOIUrl":"https://doi.org/10.1101/2024.09.08.611882","url":null,"abstract":"The incidence of disseminated gonococcal infection (DGI) has remained low since the advent of antibiotics, however recent surge in DGI have inexplicably emerged within several regions during the past decade. In an effort to understand whether Neisseria gonorrhoeae that cause disseminated disease can be differentiated from non-invasive strains, we have performed a phenotypic and genotypic analysis on a selection of isolates obtained from invasive and uncomplicated infections in Canada. Phenotypic analysis of a matched subset of 19 isolates obtained since 2013 found that these varied in their capacity to aggregate in suspension and in their association with serum complement proteins, however these interactions did not discriminate between the invasive and mucosal isolates. Sequence typing of 360 Canadian isolates revealed that two porB alleles are significantly associated with the DGI strains, one of these being present throughout the past decade whereas the other became associated more recently. A PopNet-based population dynamics analysis, which instead establishes relationships based upon variance among discrete chromosomal segments, found that DGI isolates were restricted in their phylogenetic distribution. While this implies a genetically-linked potential to cause invasive disease, it cannot distinguish between an inherent difference in the phenotype of these populations or the horizontal exchange of some virulence factor among closely related strains. Regardless, a large number of genetic determinants are enriched in the DGI strains, making these enticing candidates for future work to understand how they might either promote the gonococcal capacity to cause systemic infection or reduce the presentation of clinical symptoms from localized infection so that it remains untreated.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilization and degradation of laminarin-based substrates by marine yeasts suggests their niche-specific role in microbial loop dynamics.","authors":"Berin Arslan-Gatz, Mikkel Schultz-Johansen, Tom-Niklas Hollwedel, Sofie Niggemeier, Rolf Nimzyk, Antje Wichels, Gunnar Gerdts, Jan-Hendrik Hehemann, Tilmann Harder, Marlis Reich","doi":"10.1101/2024.09.13.612705","DOIUrl":"https://doi.org/10.1101/2024.09.13.612705","url":null,"abstract":"In the oceans, the diversity of phytoplankton primary products supports a wide range of microbial heterotrophs, including bacteria and fungi. The organic substrate dynamics within pelagic microbial communities are strongly controlled by microorganismal interactions, resulting in a dense interactome. While the role of bacteria in the microbial loop is well documented, the degradation capacity and substrate specificity of marine fungi, as well as their role and function in metabolic guilds with bacteria, is comparatively less understood. We chose the polysaccharide laminarin, a major product of marine primary production, as well as oligomeric laminarin subunits and monomeric glucose, to study the degradation capacity of eleven marine yeast isolates from the pelagic microbial community of Helgoland Roads. Our aim was to measure yeast growth and correlate degradation yields and putative intermediate degradation products with the size of laminarin-based organic precursor substrates. We developed a reproducible, temporally resolved, high-throughput growth protocol to measure resource-specific yeast growth. Measurement of temporally fine-scaled growth kinetic models of isolates were accompanied with qualitative and quantitative chemical analyses of substrates and degradation intermediates. Our data showed that yeast growth was negatively correlated with oligomer length. Fluorophore-assisted carbohydrate electrophoresis suggested the lack of enzymatic endo-activity for laminarin in yeasts under investigation, suggesting they may occupy a niche in the microbial loop, benefitting from extracellular hydrolysis of carbohydrates by other microorganisms. In terrestrial environments, namely forest soil ecosystems, yeasts have been assigned a similar niche, supporting a prominent role of yeasts in microbial interactomes.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indika Senavirathna, Dinesha Jayasundara, Janith Warnasekara, Suneth B Agampodi, Ellie J. Putz, Jarlath E. Nally, Darrell O. Bayles, Reetika Chaurasia, Joseph M. Vinetz
{"title":"Genomic Analysis of Human-infecting Leptospira borgpetersenii isolates in Sri Lanka expanded PF07598 gene family repertoire, less overall genome reduction than bovine isolates","authors":"Indika Senavirathna, Dinesha Jayasundara, Janith Warnasekara, Suneth B Agampodi, Ellie J. Putz, Jarlath E. Nally, Darrell O. Bayles, Reetika Chaurasia, Joseph M. Vinetz","doi":"10.1101/2024.09.17.613401","DOIUrl":"https://doi.org/10.1101/2024.09.17.613401","url":null,"abstract":"Leptospira borgpetersenii commonly causes human leptospirosis, including severe disease. The first published analysis of L. borgpetersenii, performed on two strains of serovar Hardjo (L550 and JB197), concluded that the L. borgpetersenii genome is in the process of genome decay with functional consequences leading to a more obligately host-dependent life cycle. Yet whole genome analysis has only been carried out on few strains of L. borgpetersenii, with limited closed genomes and comprehensive analysis. Herein we report the complete, circularized genomes of seven non-Hardjo Leptospira borgpetersenii isolates from human leptospirosis patients in Sri Lanka. These isolates (all ST144) were found to be nearly identical by whole genome analysis; serotyping showed they are a novel serovar. We show that the L. borgpetersenii isolated from humans in Sri Lanka are less genomically decayed than previously reported isolates: fewer pseudogenes (N=141) and Insertion Sequence (IS) elements (N=46) compared to N=248, N=270, and N=400 pseudogenes, and N=121 and N=116 IS elements in published L. borgpetersenii Hardjo genomes (L550, JB197 and TC112). Compared to previously published L. borgpetersenii whole genome analyses showing two to three VM proteins in L. borgpetersenii isolates from cattle, rats and humans, we found that all of the human L. borgpetersenii isolates from Sri Lanka, including previously reported serovar Piyasena, have 4 encoded VM proteins, one ortholog of L. interrogans Copenhageni LIC12339 and 3 orthologs of LIC12844. Our findings of fewer pseudogenes, IS elements and expansion of the LIC12844 homologs of the PF07598 family in these human isolates suggests that this newly identified L. borgpetersenii serovar from Sri Lanka has unique pathogenicity. Comparative genome analysis and experimental studies of these L. borgpetersenii isolates will enable deeper insights into the molecular and cellular mechanisms of leptospirosis pathogenesis.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert Knop, Simon Keweloh, Silvia Dittmann, Daniela Zuehlke, Susanne Sievers
{"title":"A rubrerythrin locus of Clostridioides difficile efficiently detoxifies reactive oxygen species","authors":"Robert Knop, Simon Keweloh, Silvia Dittmann, Daniela Zuehlke, Susanne Sievers","doi":"10.1101/2024.09.17.613384","DOIUrl":"https://doi.org/10.1101/2024.09.17.613384","url":null,"abstract":"As an intestinal human pathogen, <em>Clostridioides difficile</em> is the main cause of antibiotic-associated diarrhoea. Endospores of this gram-positive bacterium enter the intestinal tract via faecal-oral transmission, germinate into vegetative and toxin-producing cells and can trigger a <em>Clostridioides difficile</em> infection. The microaerophilic conditions (0.1 to 0.4 % O<sub>2</sub>) of the large intestine represent a challenge for the strictly anaerobic organism, which protects itself by a variety of oxidative stress proteins. Four of these are encoded in an operon that is assumed to be involved in the detoxification of H<sub>2</sub>O<sub>2</sub> and O<sub>2</sub><sup>●-</sup>. This operon encodes a rubrerythrin (<em>rbr</em>), its own transcriptional repressor PerR (<em>perR</em>), a desulfoferrodoxin (<em>rbo</em>) and a putative glutamate dehydrogenase (<em>CD630_08280</em>) with an N-terminal rubredoxin domain, which is only expressed under high oxidative stress conditions. In this study, the enzyme activity of Rbr, Rbo and CD630_08280 was tested <em>in-vitro</em>. Recombinant proteins were overexpressed in <em>C. difficile</em> and purified anaerobically by affinity chromatography. A H<sub>2</sub>O<sub>2</sub> reduction potential was demonstrated for Rbr, Rbo and glutamate dehydrogenase. Rbr and glutamate dehydrogenase proved to synergistically detoxify H<sub>2</sub>O<sub>2</sub> very efficiently. Furthermore, Rbo was verified as a O<sub>2</sub><sup>●-</sup> reductase and its activity compared to the superoxide dismutase of <em>E. coli</em>. The investigated gene locus codes for an oxidative stress operon whose members are able to completely neutralize O<sub>2</sub><sup>●-</sup> and H<sub>2</sub>O<sub>2</sub> to water and could thus be vital for <em>C. difficile</em> to establish an infection in the host.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oliver JD Charity, Gaetan Thilliez, Haider Al-Khanaq, Luke Acton, Rafal Kolenda, Matt Bawn, Liljana Petrovska, Robert A Kingsley
{"title":"Reversible excision of the wzy locus in Salmonella Typhimurium may aid recovery following phage predation","authors":"Oliver JD Charity, Gaetan Thilliez, Haider Al-Khanaq, Luke Acton, Rafal Kolenda, Matt Bawn, Liljana Petrovska, Robert A Kingsley","doi":"10.1101/2024.09.17.613263","DOIUrl":"https://doi.org/10.1101/2024.09.17.613263","url":null,"abstract":"Bacteriophage (phage) are promising novel antimicrobials but a key challenge to their effective implementation is the rapid emergence of phage resistance. An improved understanding of phage-host interactions is therefore needed. The Anderson phage typing scheme differentiates closely related strains of Salmonella enterica serovar Typhimurium (S. Typhimurium) based on sensitivity to a panel of phage preparations. Switches in phage type are indicative of changes in phage sensitivity and inform on the dynamics of phage interaction with their host bacteria. We investigated the molecular basis of switches between the relatively phage sensitive S. Typhimurium DT8 and phage resistant DT30 strains that are present in the same phylogenetic clade. DT30 strains emerged from DT8 strains predominantly by deletion of a genomic region affecting the wzy locus encoding an O-antigen polymerase. The deletion site was flanked by two perfect direct repeats designated attL and attR. During broth culture in the presence of a typing phage that used O-antigen as primary receptor the Deltawzy genotype increased in frequency compared with culture in the absence of phage and removal of attL prevented deletion of the wzy locus. Co-culture of S. Typhimurium DT8 with a strain lacking wzy resulted in reversion of the latter to wild type. We propose a model in which reversible deletion of the wzy locus enables recovery of S. Typhimurium DT8 following predation by phage that use O-antigen as their primary receptor. This was consistent with ancestral state reconstruction of DT8 and DT30 phylogeny that supported a model of reversible transition from DT8 to DT30 in natural populations.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cryo-EM Structure of an Active Bacterial SIR2-STAND Filament","authors":"Yiqun Wang, Yuqing Tian, Xu Yang, Feng Yu, Jianting Zheng","doi":"10.1101/2024.09.15.613165","DOIUrl":"https://doi.org/10.1101/2024.09.15.613165","url":null,"abstract":"The signal transduction ATPases with numerous domains (STAND) superfamily encompasses widely distributed immune systems across bacteria, eukaryotes and archaea. The bacterial antiviral STAND type 5 (Avs5) contains an N-terminal Sirtuin (SIR2) domain, which protects against phage invasion. Despite the established roles of SIR2 and STAND in prokaryotic and eukaryotic immunity, the mechanism underlying their collaboration remains unclear. Here we present cryo-EM structures of Escherichia fergusonii Avs5 (EfAvs5) filaments, elucidating the mechanisms of dimerization, filamentation, filament clustering, ATP binding and NAD+ hydrolysis, all of which are crucial for anti-phage defense. The SIR2 domains and nucleotide-binding oligomerization domains (NOD) engage in the intra- and inter-dimer interaction to form an individual filament, while the outward C-terminal domains contribute to bundle formation. Filamentation potentially stabilizes the dimeric SIR2 configuration, thereby activating the NADase activity of EfAvs5. EfAvs5 is deficient in the ATPase activity, but elevated ATP concentrations can impede its NADase activity. Together, we uncover the filament assembly of Avs5 as a unique mechanism to switch enzyme activities and perform anti-phage defenses.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sangeevan Vellappan, Junhong Sun, John Favate, Pranavi Jagadeesan, Debbie Cerda, Premal Shah, Srujana S Yadavalli
{"title":"Translational profiling of stress-induced small proteins uncovers an unexpected connection among distinct signaling systems","authors":"Sangeevan Vellappan, Junhong Sun, John Favate, Pranavi Jagadeesan, Debbie Cerda, Premal Shah, Srujana S Yadavalli","doi":"10.1101/2024.09.13.612970","DOIUrl":"https://doi.org/10.1101/2024.09.13.612970","url":null,"abstract":"Signaling networks in bacteria enable sensing and adaptation to environmental conditions by activating specific genes that help counteract stressors. Small proteins (≥50 amino acids long) are a rising class of bacterial stress response regulators. <em>Escherichia coli</em> encodes over 150 small proteins, most of which lack known phenotypes and their biological roles remain elusive. Using magnesium limitation as a stressor, we investigate small proteins induced in response to stress using ribosome profiling, RNA sequencing, and transcriptional reporter assays. We uncover 17 small proteins with increased translation initiation, a majority of which are transcriptionally upregulated by the PhoQ-PhoP two-component signaling system, crucial for magnesium homeostasis. Next, we describe small protein-specific deletion and overexpression phenotypes, which underscore the physiological significance of their expression in low magnesium stress. Most remarkably, our study reveals that a small membrane protein YoaI is an unusual connector of the major signaling networks – PhoR-PhoB and EnvZ-OmpR in <em>E. coli</em>, advancing our understanding of small protein regulators of cellular signaling.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samson Ali, Adrian Koh, David Popp, Kotaro Tanaka, Yoshihito Kitaoku, Noriyuki Miyazaki, Kenji Iwasaki, Kaoru Mitsuoka, Robert C Robinson, Akihiro Narita
{"title":"Bacterial genome encoded ParMs","authors":"Samson Ali, Adrian Koh, David Popp, Kotaro Tanaka, Yoshihito Kitaoku, Noriyuki Miyazaki, Kenji Iwasaki, Kaoru Mitsuoka, Robert C Robinson, Akihiro Narita","doi":"10.1101/2024.09.12.612785","DOIUrl":"https://doi.org/10.1101/2024.09.12.612785","url":null,"abstract":"ParMs generally exist on low copy number plasmids where they contribute to plasmid segregation and stable inheritance. We carried out bioinformatics analysis, which indicated that ParM genes are not only confined to plasmids but are also occasionally found on genomes. Here we report the discovery and characterization of two chromosome encoded ParMs (cParMs) from the genomes of Desulfitobacterium hafniense (Dh-cParM1) and Clostridium botulinum (Cb-cParM). Both cParMs form filaments, exhibit nucleotide hydrolysis, and possess characteristic ParM subunit structures. Dh-cParM1 forms single and tightly coupled double filaments and is highly conserved on the chromosomes of five of six Desulfitobacterium species. Interestingly, these bacteria have not been reported to harbour plasmids. Cb-cParM possesses unique properties. Its filaments were stable after nucleotide hydrolysis and Pi release, and its ParR, (Cb-cParR) did not affect the initial stage of Cb-cParM polymerization but displayed properties of a depolymerization factor for mature filaments. These results indicate functional, polymerizing ParMs can be encoded on genomes, suggesting that ParM roles may extend to other functions beyond plasmid segregation.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"101 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}