Translational profiling of stress-induced small proteins uncovers an unexpected connection among distinct signaling systems

Sangeevan Vellappan, Junhong Sun, John Favate, Pranavi Jagadeesan, Debbie Cerda, Premal Shah, Srujana S Yadavalli
{"title":"Translational profiling of stress-induced small proteins uncovers an unexpected connection among distinct signaling systems","authors":"Sangeevan Vellappan, Junhong Sun, John Favate, Pranavi Jagadeesan, Debbie Cerda, Premal Shah, Srujana S Yadavalli","doi":"10.1101/2024.09.13.612970","DOIUrl":null,"url":null,"abstract":"Signaling networks in bacteria enable sensing and adaptation to environmental conditions by activating specific genes that help counteract stressors. Small proteins (≥50 amino acids long) are a rising class of bacterial stress response regulators. <em>Escherichia coli</em> encodes over 150 small proteins, most of which lack known phenotypes and their biological roles remain elusive. Using magnesium limitation as a stressor, we investigate small proteins induced in response to stress using ribosome profiling, RNA sequencing, and transcriptional reporter assays. We uncover 17 small proteins with increased translation initiation, a majority of which are transcriptionally upregulated by the PhoQ-PhoP two-component signaling system, crucial for magnesium homeostasis. Next, we describe small protein-specific deletion and overexpression phenotypes, which underscore the physiological significance of their expression in low magnesium stress. Most remarkably, our study reveals that a small membrane protein YoaI is an unusual connector of the major signaling networks – PhoR-PhoB and EnvZ-OmpR in <em>E. coli</em>, advancing our understanding of small protein regulators of cellular signaling.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.13.612970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Signaling networks in bacteria enable sensing and adaptation to environmental conditions by activating specific genes that help counteract stressors. Small proteins (≥50 amino acids long) are a rising class of bacterial stress response regulators. Escherichia coli encodes over 150 small proteins, most of which lack known phenotypes and their biological roles remain elusive. Using magnesium limitation as a stressor, we investigate small proteins induced in response to stress using ribosome profiling, RNA sequencing, and transcriptional reporter assays. We uncover 17 small proteins with increased translation initiation, a majority of which are transcriptionally upregulated by the PhoQ-PhoP two-component signaling system, crucial for magnesium homeostasis. Next, we describe small protein-specific deletion and overexpression phenotypes, which underscore the physiological significance of their expression in low magnesium stress. Most remarkably, our study reveals that a small membrane protein YoaI is an unusual connector of the major signaling networks – PhoR-PhoB and EnvZ-OmpR in E. coli, advancing our understanding of small protein regulators of cellular signaling.
应激诱导小蛋白的转译剖析揭示了不同信号系统之间意想不到的联系
细菌中的信号网络可通过激活特定基因来感知和适应环境条件,从而帮助抵御应激源。小蛋白(≥50 个氨基酸长)是一类新兴的细菌应激反应调节因子。大肠杆菌编码了 150 多种小蛋白,其中大多数缺乏已知的表型,其生物学作用仍然难以捉摸。我们利用镁限制作为应激源,通过核糖体分析、RNA 测序和转录报告实验研究了应激反应诱导的小蛋白。我们发现了17种翻译起始增加的小蛋白,其中大部分受到PhoQ-PhoP双组分信号系统的转录上调,而PhoQ-PhoP双组分信号系统对镁平衡至关重要。接下来,我们描述了小蛋白特异性缺失和过表达的表型,强调了它们在低镁胁迫下表达的生理意义。最值得注意的是,我们的研究揭示了小膜蛋白 YoaI 是大肠杆菌中 PhoR-PhoB 和 EnvZ-OmpR 这两个主要信号网络的非同寻常的连接者,从而推进了我们对细胞信号小蛋白调控因子的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信