Juan Manuel Anselmi Relats, Leonor P Roguin, Mariel Marder, Magalí C Cercato, Julieta Marino, Viviana C Blank
{"title":"Synergistic effect of the sphingosine kinase inhibitor safingol in combination with 2'-nitroflavone in breast cancer.","authors":"Juan Manuel Anselmi Relats, Leonor P Roguin, Mariel Marder, Magalí C Cercato, Julieta Marino, Viviana C Blank","doi":"10.1007/s00109-024-02497-7","DOIUrl":"10.1007/s00109-024-02497-7","url":null,"abstract":"<p><p>Sphingosine kinase-1 (SPHK1), the enzyme that catalyzes the synthesis of the pro-oncogenic molecule sphingosine-1-phosphate, is commonly upregulated in breast cancer cells and has been linked with poor prognosis and progression by promoting cell transformation, proliferation, angiogenesis, and metastasis. Therefore, SPHK1-targeting drugs have been proposed for breast cancer treatment, with better antitumor results when they are combined with chemotherapy. Previously, we demonstrated that the synthetic flavonoid 2'-nitroflavone (2'NF) exerted a potent and selective antiproliferative effect in murine HER2-positive LM3 mammary tumor cells. As we found that these cells overexpress SPHK1, we decided to explore the antitumor action of the combination of SPHK inhibitors (safingol or SKI-II) with 2'NF. In vitro assays showed that the combination induced a synergistic antiproliferative effect in LM3 cells. Similar results were obtained when human HER2-positive MDA-MB-453 breast cancer cells were treated with the combination of 2'NF/safingol. We also found that safingol potentiated the 2'NF apoptotic effect in both cell lines. The synergistic antitumor effect was confirmed in vivo in an LM3 syngeneic breast cancer model. Moreover, western blot analysis of tumor lysates revealed that combined treatment increased PARP cleavage and Bax protein levels and decreased anti-apoptotic Bcl-xL and Bcl-2 protein levels. Additionally, mice treated with both compounds showed no histopathological effects on different organ tissues. In summary, these findings suggest that the combination safingol/2'NF can be proposed as a potential therapeutic strategy for HER2-positive breast cancer treatment. KEY MESSAGES: The combination safingol/2'-nitroflavone exerts a synergic antitumor action in vitro. Safingol potentiates 2'-nitroflavone apoptotic effect in breast cancer cells. Safingol enhances the 2'-nitroflavone antitumor activity in vivo in breast cancer.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"1503-1516"},"PeriodicalIF":4.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Abnormally accumulated GM2 ganglioside contributes to skeletal deformity in Tay-Sachs mice.","authors":"Secil Akyildiz Demir, Volkan Seyrantepe","doi":"10.1007/s00109-024-02498-6","DOIUrl":"10.1007/s00109-024-02498-6","url":null,"abstract":"<p><p>Tay-Sachs Disease is a rare lysosomal storage disorder caused by mutations in the HEXA gene, responsible for the degradation of ganglioside GM2. In addition to progressive neurodegeneration, Tay-Sachs patients display bone anomalies, including kyphosis. Tay-Sachs disease mouse model (Hexa-/-Neu3-/-) shows both neuropathological and clinical abnormalities of the infantile-onset disease phenotype. In this study, we investigated the effects of GM2 accumulation on bone remodeling activity. Here, we evaluated the bone phenotype of 5-month-old Hexa-/-Neu3-/- mice with age-matched control groups using gene expression analysis, bone plasma biomarker analysis, and micro-computed tomography. We demonstrated lower plasma alkaline phosphatase activity and calcium levels with increased tartrate-resistant acid phosphatase levels, indicating reduced bone remodeling activity in mice. Consistently, gene expression analysis confirmed osteoblast reduction and osteoclast induction in the femur of mice. Micro-computed tomography and analysis show reduced trabecular bone volume, mineral density, number, and thickness in Hexa-/-Neu3-/- mice. In conclusion, we demonstrated that abnormal GM2 ganglioside accumulation significantly triggers skeletal abnormality in Tay-Sachs mice. We suggest that further investigation of the molecular basis of bone structure anomalies is necessary to elucidate new therapeutic targets that prevent the progression of bone symptoms and improve the life standards of Tay-Sachs patients. KEY MESSAGES: We detected the markers of bone loss-associated disorders such as osteopenia and osteoporosis in the Tay-Sachs disease mice model Hexa-/-Neu3-/-. We also demonstrated for the first time there is an increase in trabecular spacing and a reduction in trabecular thickness and number indicating skeletal abnormalities in mice model using micro-CT analysis.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"1517-1526"},"PeriodicalIF":4.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yashvi Sharma, Subhadip Ghatak, Chandan K Sen, Sujata Mohanty
{"title":"Emerging technologies in regenerative medicine: The future of wound care and therapy.","authors":"Yashvi Sharma, Subhadip Ghatak, Chandan K Sen, Sujata Mohanty","doi":"10.1007/s00109-024-02493-x","DOIUrl":"10.1007/s00109-024-02493-x","url":null,"abstract":"<p><p>Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"1425-1450"},"PeriodicalIF":4.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extragustatory bitter taste receptors in head and neck health and disease.","authors":"Jacob C Harris, Robert J Lee, Ryan M Carey","doi":"10.1007/s00109-024-02490-0","DOIUrl":"10.1007/s00109-024-02490-0","url":null,"abstract":"<p><p>Taste receptors, first described for their gustatory functions within the oral cavity and oropharynx, are now known to be expressed in many organ systems. Even intraoral taste receptors regulate non-sensory pathways, and recent literature has connected bitter taste receptors to various states of health and disease. These extragustatory pathways involve previously unexplored, clinically relevant roles for taste signaling in areas including susceptibility to infection, antibiotic efficacy, and cancer outcomes. Among other physicians, otolaryngologists who manage head and neck diseases should be aware of this growing body of evidence and its relevance to their fields. In this review, we describe the role of extragustatory taste receptors in head and neck health and disease, highlighting recent advances, clinical implications, and directions for future investigation. Additionally, this review will discuss known TAS2R polymorphisms and the associated implications for clinical prognosis.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"1413-1424"},"PeriodicalIF":4.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabio Valenti, Federica Ganci, Andrea Sacconi, Federica Lo Sardo, Marco D'Andrea, Giuseppe Sanguineti, Silvia Di Agostino
{"title":"Polo-like kinase 2 targeting as novel strategy to sensitize mutant p53-expressing tumor cells to anticancer treatments.","authors":"Fabio Valenti, Federica Ganci, Andrea Sacconi, Federica Lo Sardo, Marco D'Andrea, Giuseppe Sanguineti, Silvia Di Agostino","doi":"10.1007/s00109-024-02499-5","DOIUrl":"10.1007/s00109-024-02499-5","url":null,"abstract":"<p><p>Polo-like kinase 2 (Plk2) belongs to a family of serine/threonine kinases, and it is involved in tumorigenesis of diverse kind of tissues. We previously reported that Plk2 gene was a transcriptional target of the mutant p53/NF-Y oncogenic complex. Plk2 protein can bind to and phosphorylate mutant p53 triggering an oncogenic autoregulatory feedback loop involved in cancer cell proliferation and chemoresistance. In this study, we aimed to assess whether the specific inhibition of Plk2 kinase activity by the selective TC-S 7005 inhibitor could decrease cell proliferation and migration inhibiting mutant p53 phosphorylation, thus disarming its oncogenic potential. We found that the Plk2 inhibitor treatment sensitized the cells to the irradiation and chemotherapy drugs, thereby overcoming the mutant p53-dependent chemoresistance. Taken together, we provided results that Plk2 could be considered a tractable pharmacological target for cancers expressing mutant p53 proteins. The combined treatment with conventional chemotherapeutic drugs and Plk2 inhibitors may represent a new candidate intervention approach, which may be considered for improving tumor cell sensitivity to DNA damaging drugs. KEY MESSAGES : Missense mutations are present in the TP53 gene in about half of all human cancers and correlate with poor patient outcome. Mutant p53 proteins exert gain of function (GOF) activities in tumor cells such as increased proliferation, genomic instability and resistance to therapies. Polo-like kinase 2 (PLK2) binds and phosphorylates mutant p53 protein strengthening its GOF activities. Pharmacologically targeting PLK2 weakens mutant p53 proteins and sensitizes tumor cells to therapeutic treatments.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"1485-1501"},"PeriodicalIF":4.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Therapy concepts in type 1 diabetes mellitus treatment: disease modifying versus curative approaches.","authors":"Sigurd Lenzen, Anne Jörns","doi":"10.1007/s00109-024-02494-w","DOIUrl":"10.1007/s00109-024-02494-w","url":null,"abstract":"<p><p>For many autoimmune diseases, including type 1 diabetes mellitus (T1DM), efforts have been made to modify the disease process through pharmacotherapy. The ultimate goal must be to develop therapies with curative potential by achieving an organ without signs of parenchymal cell destruction and without signs of immune cell infiltration. In the case of the pancreas, this means regenerated and well-preserved beta cells in the islets without activated infiltrating immune cells. Recent research has opened up the prospect of successful antibody combination therapy for autoimmune diabetes with curative potential. This goal cannot be achieved with monotherapies. The requirements for the implementation of such a therapy with curative potential for the benefit of patients with T1DM and LADA (latent autoimmune diabetes in adults) are considered.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"1451-1455"},"PeriodicalIF":4.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Umbelliferone alleviates impaired wound healing and skin barrier dysfunction in high glucose-exposed dermal fibroblasts and diabetic skins.","authors":"Dong Yeon Kim, Young-Hee Kang, Min-Kyung Kang","doi":"10.1007/s00109-024-02491-z","DOIUrl":"10.1007/s00109-024-02491-z","url":null,"abstract":"<p><p>Skin wound healing is a complex process involving various cellular and molecular events. However, chronic wounds, particularly in individuals with diabetes, often experience delayed wound healing, potentially leading to diabetic skin complications. In this study, we examined the effects of umbelliferone on skin wound healing using dermal fibroblasts and skin tissues from a type 2 diabetic mouse model. Our results demonstrate that umbelliferone enhances several crucial aspects of wound healing. It increases the synthesis of key extracellular matrix components such as collagen I and fibronectin, as well as proteins involved in cell migration like EVL and Fascin-1. Additionally, umbelliferone boosts the secretion of angiogenesis factors VEGF and HIF-1α, enhances the expression of cell adhesion proteins including E-cadherin, ZO-1, and Occludin, and elevates levels of skin hydration-related proteins like HAS2 and AQP3. Notably, umbelliferone reduces the expression of HYAL, thereby potentially decreasing tissue permeability. As a result, it promotes extracellular matrix deposition, activates cell migration and proliferation, and stimulates pro-angiogenic factors while maintaining skin barrier functions. In summary, these findings underscore the therapeutic potential of umbelliferone in diabetic wound care, suggesting its promise as a treatment for diabetic skin complications. KEY MESSAGES: Umbelliferone suppressed the breakdown of extracellular matrix components in the skin dermis while promoting their synthesis. Umbelliferone augmented the migratory and proliferative capacities of fibroblasts. Umbelliferone activated the release of angiogenic factors in diabetic wounds, leading to accelerated wound healing. Umbelliferone bolstered intercellular adhesion and reinforced the skin barrier by preventing moisture loss and preserving skin hydration.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"1457-1470"},"PeriodicalIF":4.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hypoxia drives estrogen receptor β-mediated cell growth via transcription activation in non-small cell lung cancer.","authors":"Qi Su, Kun Chen, Jiayan Ren, Yu Zhang, Xu Han, Sze Wei Leong, Jingjing Wang, Qing Wu, Kaihui Tu, Ammar Sarwar, Yanmin Zhang","doi":"10.1007/s00109-024-02496-8","DOIUrl":"10.1007/s00109-024-02496-8","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is a highly malignant tumor with a poor prognosis. Hypoxia conditions affect multiple cellular processes promoting the adaptation and progression of cancer cells via the activation of hypoxia-inducible factors (HIF) and subsequent transcription activation of their target genes. Preliminary studies have suggested that estrogen receptor β (ERβ) might play a promoting role in the progression of NSCLC. However, the precise mechanisms, particularly its connection to HIF-1α-mediated modulation under hypoxia, remain unclear. Our findings demonstrated that the overexpression of ERβ, not ERα, increased cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. Tissue microarray staining revealed a strong correlation between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in CoCl<sub>2</sub>-induced hypoxia, 1% O<sub>2</sub> incubation, or HIF-1α overexpressing cells. ChIP identified HIF-1α binding to a hypoxia response element in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the tumor growth, thus emphasizing the promising prospects of targeting HIF-1α and ERβ as a therapeutic approach for the treatment of NSCLC. KEY MESSAGES: ERβ, not ERα, increases cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. A strong correlation exists between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in hypoxic cells via binding to HRE in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the NSCLC tumor growth.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"1471-1484"},"PeriodicalIF":4.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francesca Spinella, Valentina Caprara, Valeriana Di Castro, Laura Rosanò, Roberta Cianfrocca, Pier Giorgio Natali, Anna Bagnato
{"title":"Retraction Note: Endothelin-1 induces the transactivation of vascular endothelial growth factor receptor-3 and modulates cell migration and vasculogenic mimicry in melanoma cells.","authors":"Francesca Spinella, Valentina Caprara, Valeriana Di Castro, Laura Rosanò, Roberta Cianfrocca, Pier Giorgio Natali, Anna Bagnato","doi":"10.1007/s00109-024-02484-y","DOIUrl":"10.1007/s00109-024-02484-y","url":null,"abstract":"","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"1411"},"PeriodicalIF":4.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liyuan Sun, Yan Cheng, Jing Wang, Di Wu, Lin Yuan, Xiaoyu Wei, Yan Li, Jie Gao, Guangmei Zhang
{"title":"Exosomal miR-21-5p derived from endometrial stromal cells promotes angiogenesis by targeting TIMP3 in ovarian endometrial cysts.","authors":"Liyuan Sun, Yan Cheng, Jing Wang, Di Wu, Lin Yuan, Xiaoyu Wei, Yan Li, Jie Gao, Guangmei Zhang","doi":"10.1007/s00109-024-02483-z","DOIUrl":"10.1007/s00109-024-02483-z","url":null,"abstract":"<p><p>Endometriosis is a multifactorial gynecological disease, with angiogenesis as a key hallmark. The role of exosomal microRNAs (miRNAs) in endometriosis is not well understood. This study investigates differentially expressed exosomal miRNAs linked to angiogenesis in endometriosis, clarifies their molecular mechanisms, and identifies potential targets. Primary endometrial stromal cells (ESCs) were cultured, and exosomes were extracted. In a co-culture system, ESC-derived exosomes were taken up by human umbilical vein endothelial cells (HUVECs). Endometriosis implant-ESC-derived exosomes (EI-EXOs) significantly promoted HUVEC proliferation, migration and tube formation compared to normal endometrium-exosomes (NE-EXOs), a finding consistent in vivo in mice. MiRNA sequencing and bioinformatics identified differentially expressed miR-21-5p from EI-EXOs, confirmed by RT-qPCR. The miR-21-5p inhibitor or GW4869 attenuated EI-EXO-induced HUVEC proliferation, migration, and tube formation. TIMP3 overexpression diminished the pro-angiogenic effect of EI-EXOs, which was reversed by adding EI-EXOs or upregulating miR-21-5p. These findings validate the crosstalk between ESCs and HUVECs mediated by exosomal miR-21-5p, and confirm the miR-21-5p-TIMP3 axis in promoting angiogenesis in endometriosis. KEY MESSAGES: ESC-derived exosomes were found to be taken up by recipient cells, i.e. HUVECs. Functionally, endometriosis implant-ESC-derived exosomes (EI-EXOs) could significantly promote the proliferation, migration and tube formation of HUVECs compared to normal endometrium-exosomes (NE-EXOs). Through miRNA sequencing and bioinformatics analysis, differentially expressed miR-21-5p released by EI-EXOs was chosen, as confirmed by qRT-PCR. miR-21-5p inhibitor or GW4869 was found to attenuate the proliferation, migration, and tube formation of HUVECs induced by EI-EXOs. In turn, TIMP3 overexpression diminished the pro-angiogenic effect of EI-EXOs, and this angiogenic phenotype was reversed once EI-EXOs were added or miR-21-5p was upregulated.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"1327-1342"},"PeriodicalIF":4.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142127209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}