{"title":"Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair.","authors":"Mengbing Chen, Bo Huang, Xiaoxia Su","doi":"10.1007/s00109-025-02513-4","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair. Mesenchymal stem cells (MSCs) represent a potential alternative for the treatment of periodontal bone defects due to their self-renewal and differentiation capabilities. Recent research indicates that MSCs exert their effects primarily through paracrine mechanisms. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) serve as pivotal mediators in intercellular communication, transferring microRNAs (miRNAs), messenger RNAs (mRNAs), proteins, and cytokines to recipient cells, thereby emulating the therapeutic effects of MSCs. In periodontitis, MSC-EVs play a pivotal role in immunomodulation and bone remodeling, thereby facilitating periodontal bone repair. As a cell-free therapy, MSC-EVs demonstrate considerable clinical potential due to their specialized membrane structure, minimal immunogenicity, low toxicity, high biocompatibility, and nanoscale size. This review indicates that MSC-EVs represent a promising approach for periodontitis treatment, with the potential to overcome the limitations of traditional therapies and offer a more effective solution for bone repair in periodontal disease. In this review, we introduce MSC-EVs, emphasizing their mechanisms and clinical applications in periodontal bone repair. It synthesizes recent advances, existing challenges, and future prospects to present up-to-date information and novel techniques for periodontal regeneration and to guide the improvement of MSC-EV therapy in clinical practice.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"137-156"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02513-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis is a chronic inflammatory disease that destroys tooth-supporting structures and poses significant public health challenges due to its high prevalence and links to systemic health conditions. Traditional treatments are effective in reducing the inflammatory response and improving the clinical symptoms of periodontitis. However, these methods are challenging to achieve an ideal treatment effect in alveolar bone repair. Mesenchymal stem cells (MSCs) represent a potential alternative for the treatment of periodontal bone defects due to their self-renewal and differentiation capabilities. Recent research indicates that MSCs exert their effects primarily through paracrine mechanisms. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) serve as pivotal mediators in intercellular communication, transferring microRNAs (miRNAs), messenger RNAs (mRNAs), proteins, and cytokines to recipient cells, thereby emulating the therapeutic effects of MSCs. In periodontitis, MSC-EVs play a pivotal role in immunomodulation and bone remodeling, thereby facilitating periodontal bone repair. As a cell-free therapy, MSC-EVs demonstrate considerable clinical potential due to their specialized membrane structure, minimal immunogenicity, low toxicity, high biocompatibility, and nanoscale size. This review indicates that MSC-EVs represent a promising approach for periodontitis treatment, with the potential to overcome the limitations of traditional therapies and offer a more effective solution for bone repair in periodontal disease. In this review, we introduce MSC-EVs, emphasizing their mechanisms and clinical applications in periodontal bone repair. It synthesizes recent advances, existing challenges, and future prospects to present up-to-date information and novel techniques for periodontal regeneration and to guide the improvement of MSC-EV therapy in clinical practice.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.