Franklin Ducatez, Marc G Berger, Carine Pilon, Thomas Plichet, Céline Lesueur, Juliette Berger, Nadia Belmatoug, Stéphane Marret, Soumeya Bekri, Abdellah Tebani
{"title":"破译戈谢病1型的代谢变化:一项多组学研究","authors":"Franklin Ducatez, Marc G Berger, Carine Pilon, Thomas Plichet, Céline Lesueur, Juliette Berger, Nadia Belmatoug, Stéphane Marret, Soumeya Bekri, Abdellah Tebani","doi":"10.1007/s00109-024-02512-x","DOIUrl":null,"url":null,"abstract":"<p><p>Gaucher disease (GD), an autosomal recessive lysosomal disorder, primarily affects the lysosomal enzyme β-glucocerebrosidase (GCase), leading to glucosylceramide accumulation in lysosomes. GD presents a wide spectrum of clinical manifestations. This study deploys immune-based proteomics and mass spectrometry-based metabolomics technologies to comprehensively investigate the biochemical landscape in 43 deeply phenotyped type 1 GD patients compared to 59 controls. Conventional and systems biology approaches have been used to analyze the data. The results show promising biological imprints. Elevated phosphatidylcholines in GD patients suggest altered lipid metabolism, potentially due to their increased synthesis. This points to endoplasmic reticulum stress and impaired lipid trafficking, commonly seen in lysosomal diseases. GD patients exhibit an inflammatory profile with elevated cytokines and autoimmune-like inflammation, even in treated patients, highlighting the complexity of GD-related immune imbalances. Mitochondrial dysfunction clues are found through increased oxidative stress markers and altered acylcarnitine profiles in GD patients, suggesting mitochondrial membrane dysfunction affecting carnitine-carrying capacity. Furthermore, platelet count, splenectomy, treatment, and clinical traits were associated with specific omics features, providing insights into GD's clinical heterogeneity and potential diagnostic markers. Autophagy inhibition appears pivotal in GD, driving lipid synthesis, impaired mitochondrial function, and inflammation through chronic activation of mTORC1. Despite limitations like focusing on type 1 GD and using targeted omics approaches, this study provides valuable insights into GD metabolic and immune dysregulation. It lays the basis for future comprehensive investigations into GD manifestations with broader scope and molecular coverage. KEY MESSAGES: The study sheds light on metabolic and immune dysregulation in Gaucher disease. Gaucher disease patients showed elevated phosphatidylcholines, disrupted lipid metabolism, and inflammation profiles. Signs of mitochondrial dysfunction are evident in Gaucher disease patients, with autophagy inhibition significantly affecting lipid synthesis, mitochondrial function, and inflammation via chronic activation of mTORC1.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":"187-203"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering metabolic shifts in Gaucher disease type 1: a multi-omics study.\",\"authors\":\"Franklin Ducatez, Marc G Berger, Carine Pilon, Thomas Plichet, Céline Lesueur, Juliette Berger, Nadia Belmatoug, Stéphane Marret, Soumeya Bekri, Abdellah Tebani\",\"doi\":\"10.1007/s00109-024-02512-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gaucher disease (GD), an autosomal recessive lysosomal disorder, primarily affects the lysosomal enzyme β-glucocerebrosidase (GCase), leading to glucosylceramide accumulation in lysosomes. GD presents a wide spectrum of clinical manifestations. This study deploys immune-based proteomics and mass spectrometry-based metabolomics technologies to comprehensively investigate the biochemical landscape in 43 deeply phenotyped type 1 GD patients compared to 59 controls. Conventional and systems biology approaches have been used to analyze the data. The results show promising biological imprints. Elevated phosphatidylcholines in GD patients suggest altered lipid metabolism, potentially due to their increased synthesis. This points to endoplasmic reticulum stress and impaired lipid trafficking, commonly seen in lysosomal diseases. GD patients exhibit an inflammatory profile with elevated cytokines and autoimmune-like inflammation, even in treated patients, highlighting the complexity of GD-related immune imbalances. Mitochondrial dysfunction clues are found through increased oxidative stress markers and altered acylcarnitine profiles in GD patients, suggesting mitochondrial membrane dysfunction affecting carnitine-carrying capacity. Furthermore, platelet count, splenectomy, treatment, and clinical traits were associated with specific omics features, providing insights into GD's clinical heterogeneity and potential diagnostic markers. Autophagy inhibition appears pivotal in GD, driving lipid synthesis, impaired mitochondrial function, and inflammation through chronic activation of mTORC1. Despite limitations like focusing on type 1 GD and using targeted omics approaches, this study provides valuable insights into GD metabolic and immune dysregulation. It lays the basis for future comprehensive investigations into GD manifestations with broader scope and molecular coverage. KEY MESSAGES: The study sheds light on metabolic and immune dysregulation in Gaucher disease. Gaucher disease patients showed elevated phosphatidylcholines, disrupted lipid metabolism, and inflammation profiles. Signs of mitochondrial dysfunction are evident in Gaucher disease patients, with autophagy inhibition significantly affecting lipid synthesis, mitochondrial function, and inflammation via chronic activation of mTORC1.</p>\",\"PeriodicalId\":50127,\"journal\":{\"name\":\"Journal of Molecular Medicine-Jmm\",\"volume\":\" \",\"pages\":\"187-203\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Medicine-Jmm\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00109-024-02512-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-024-02512-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Deciphering metabolic shifts in Gaucher disease type 1: a multi-omics study.
Gaucher disease (GD), an autosomal recessive lysosomal disorder, primarily affects the lysosomal enzyme β-glucocerebrosidase (GCase), leading to glucosylceramide accumulation in lysosomes. GD presents a wide spectrum of clinical manifestations. This study deploys immune-based proteomics and mass spectrometry-based metabolomics technologies to comprehensively investigate the biochemical landscape in 43 deeply phenotyped type 1 GD patients compared to 59 controls. Conventional and systems biology approaches have been used to analyze the data. The results show promising biological imprints. Elevated phosphatidylcholines in GD patients suggest altered lipid metabolism, potentially due to their increased synthesis. This points to endoplasmic reticulum stress and impaired lipid trafficking, commonly seen in lysosomal diseases. GD patients exhibit an inflammatory profile with elevated cytokines and autoimmune-like inflammation, even in treated patients, highlighting the complexity of GD-related immune imbalances. Mitochondrial dysfunction clues are found through increased oxidative stress markers and altered acylcarnitine profiles in GD patients, suggesting mitochondrial membrane dysfunction affecting carnitine-carrying capacity. Furthermore, platelet count, splenectomy, treatment, and clinical traits were associated with specific omics features, providing insights into GD's clinical heterogeneity and potential diagnostic markers. Autophagy inhibition appears pivotal in GD, driving lipid synthesis, impaired mitochondrial function, and inflammation through chronic activation of mTORC1. Despite limitations like focusing on type 1 GD and using targeted omics approaches, this study provides valuable insights into GD metabolic and immune dysregulation. It lays the basis for future comprehensive investigations into GD manifestations with broader scope and molecular coverage. KEY MESSAGES: The study sheds light on metabolic and immune dysregulation in Gaucher disease. Gaucher disease patients showed elevated phosphatidylcholines, disrupted lipid metabolism, and inflammation profiles. Signs of mitochondrial dysfunction are evident in Gaucher disease patients, with autophagy inhibition significantly affecting lipid synthesis, mitochondrial function, and inflammation via chronic activation of mTORC1.
期刊介绍:
The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to:
Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research.
Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.