{"title":"Research progress on the preparation of irradiation-resistant coating based on PVD technology","authors":"Sijia Fan, Baosen Mi, Jingjing Wang, Ping Liu, Xun Ma, Tianju Chen, Wei Li","doi":"10.1016/j.jmrt.2024.08.206","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.08.206","url":null,"abstract":"Nuclear energy is essential for the future development of countries. However, both structural and functional components of nuclear power equipment are facing severe challenges of nuclear irradiation damage after experiencing irradiation growth and irradiation creep. How to avoid irradiation damage to nuclear power equipment has become a hotspot in international research and development of surface protection technology. Deposition of protective coatings on the underlying object surface or in bulk materials has been considered as a near-term solution to enhanc functional components. Different substrate materials are selected according to other service conditions within the reactor. Suitable material selection combined with relevant optimization can significantly increase the service life of materials. This review summarizes recent research on several categories of anti-irradiation coatings prepared by physical vapor deposition technology for current industrial applications. These includes metallic, ceramic, composite and high entropy alloy coatings. The review endeavors to impart a thorough understanding of the properties of these selected anti-irradiation coatings, from the fundamental aspects of their substrate materials to their practical applications across diverse settings. It explores not only the current research progress but also the potential avenues for future advancements. Additionally, the intricate relationships between coating formulations, their resistance to irradiation, and their ultimate performance in various environments are illuminated in this paper.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"83 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Jeevan Rao, S. Singh, Narender Singh, P. Janaki Ramulu, Thiago F. Santos, Caroliny M. Santos, P. Senthamaraikannan, Indran Suyambulingam, Femiana Gapsari, Rudianto Raharjo, Sanjay Mavinkere Rangappa, Suchart Siengchin
{"title":"Enhancing mechanical performance and water resistance of Careya-Banana fiber epoxy hybrid composites through PLA coating and alkali treatment","authors":"H. Jeevan Rao, S. Singh, Narender Singh, P. Janaki Ramulu, Thiago F. Santos, Caroliny M. Santos, P. Senthamaraikannan, Indran Suyambulingam, Femiana Gapsari, Rudianto Raharjo, Sanjay Mavinkere Rangappa, Suchart Siengchin","doi":"10.1016/j.jmrt.2024.08.190","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.08.190","url":null,"abstract":"The ongoing research focuses on exploring the potential of (CA) fiber, banana fiber (BF), and epoxy composites as sustainable alternatives to petroleum-based products and synthetic fibers. The aim is to enhance the interfacial bonding and overall performance of these composites while reducing reliance on traditional materials. The study investigates the adhesion between CA fiber, BF (both chemically treated), and epoxy with polylactic acid (PLA) coating. Specifically, it examined how the PLA coating affects the mechanical properties, including tensile strength, flexural strength, impact resistance, and water absorption behavior, of the fabricated composites. Mechanical characterizations of the composite specimens are conducted following ASTM standards. The PLA-coated and NaOH-treated specimens significantly improved their tensile strength (20.56%) and flexural strength (16.7%), and significantly reduced their water absorption capacity (by 47.6%) compared to the untreated ones. These findings highlight the promise of using treated natural fibers and PLA coatings to create more sustainable and high-performance composite materials.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Zhang, Hao Yu, Liang Wang, Binbin Wang, Baoxian Su, Longhui Yao, Chunzhi Zhao, Ran Cui, Yanqing Su
{"title":"Additive manufacturing nickel-aluminum bronze alloy via wire-fed electron beam directed energy deposition: Enhanced mechanical properties and corrosion resistance compared to as-cast counterpart","authors":"Yong Zhang, Hao Yu, Liang Wang, Binbin Wang, Baoxian Su, Longhui Yao, Chunzhi Zhao, Ran Cui, Yanqing Su","doi":"10.1016/j.jmrt.2024.08.198","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.08.198","url":null,"abstract":"In the present work, a wall-structured nickel-aluminum bronze (NAB) alloy was fabricated via electron beam directed energy deposition (EB-DED) additive manufacturing with a single-pass multi-layer deposition strategy. A comprehensive comparative analysis of microstructure, mechanical properties, and corrosion resistance was conducted against a conventionally cast NAB alloy. The inherent rapid solidification and cyclic thermal processing of the EB-DED technique profoundly influenced the microstructural evolution of the NAB alloy. The as-deposited NAB alloy exhibited a fine-grained microstructure, devoid of the martensitic β′ phase, accompanied by the spheroidization of partial κ precipitates, and a homogeneous distribution of alloying elements. These distinctive microstructural attributes synergistically enhanced the strength, hardness, and toughness of the NAB alloy, conferring superior mechanical properties compared to its cast counterpart. Furthermore, the as-deposited alloy demonstrated remarkable corrosion resistance in a 3.5 wt% NaCl solution, significantly outperforming the cast alloy. The underlying mechanisms governing the structure-property relationships were elucidated. This comprehensive investigation provided insights into the unique characteristics and potential applications of EB-DED fabricated NAB alloys, positioning them as promising candidates for high-performance components subjected to severe mechanical and corrosive service conditions.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Liu, Chengsong Liu, Yong Wang, Hua Zhang, Hongwei Ni
{"title":"Effect of heat treatment on the corrosion resistance of 316L stainless steel manufactured by laser powder bed fusion","authors":"Wei Liu, Chengsong Liu, Yong Wang, Hua Zhang, Hongwei Ni","doi":"10.1016/j.jmrt.2024.08.194","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.08.194","url":null,"abstract":"Understanding the influence mechanism of microstructures and inclusions during heat treatment on the corrosion resistance of L-PBF 316L stainless steel (SS) is crucial for steel quality control and subsequent industrial application. In this study, the evolution of microstructure, inclusions and passive film in the L-PBF 316L SS during heat treatment at the temperature of 1000 °C and 1200 °C for 2 h, including crystal characteristics, dislocation density, passivation film composition and so on, were characterized by electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of L-PBF 316L SS samples was evaluated by Tafel test and electrochemical impedance spectroscopy test. The corrosion mechanisms of L-PBF 316L SS before and after heat treatment were clarified to elucidate the intrinsic effect of microstructure and inclusions on the corrosion resistance of the steel. Results showed that the heat treatment conducted at 1200 °C effectively reduced the number of grain boundaries and induced a substantial number of Σ3 twin grain boundaries in the L-PBF 316L SS, thereby efficiently impeding the precipitation of detrimental phases and reducing corrosion susceptibility at the grain boundaries. Meanwhile, the recrystallization-induced rearrangement of dislocations and the homogenization of grains effectively facilitated the growth of passivation film, thereby increasing the corrosion resistance of HT1200 sample. Additionally, the increase of MoO content compensated for the detrimental impact on the stability of the passivation film resulting from the reduction in chromium oxide content. Transformation from the MnO–SiO–CrO inclusions in the as-built sample to the SiO inclusions in the HT1200 sample would also retard the penetration of corrosive ions into the steel matrix.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Liu, Shengen Zhang, Hanlin Shen, Binjie Lou, Bolin Zhang
{"title":"Recycling of secondary aluminum dross to make alumina by hydrometallurgy: A review","authors":"Jun Liu, Shengen Zhang, Hanlin Shen, Binjie Lou, Bolin Zhang","doi":"10.1016/j.jmrt.2024.08.151","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.08.151","url":null,"abstract":"Secondary aluminum (Al) dross (SAD) is a hazardous waste discharged from Al production, processing and recycling. Over 6.7 million tons of SAD was discharged on the planet in 2023. SAD is consisted of 40–60 wt% of alumina (AlO), 10–30 wt% of AlN, 5–15 wt% of salts and 3–10 wt% of heavy metal oxides. Currently, recycling of SAD to make AlO by hydrometallurgy is a promising method for disposal of SAD. Hydrometallurgy method is mainly divided into acid leaching and alkali leaching. In acid leaching, Al, AlN and AlO react with acid to form aluminum sulfate and aluminum chloride. In alkali leaching, Al, AlN and AlO react with alkali to form sodium aluminate. High-purity AlO is obtained after precipitation, washing, drying and calcination from the leachate. Resource consumption and emission was calculated to evaluate the economic and environmental benefits. About 147.9 and 172.6 dollars was earned after making AlO from a ton of SAD by alkali and acid leaching process, respectively. And carbon emissions of a ton of AlO was risen about 596.5 and 2216.0 kg CO, respectively, compared with the Bayer process with bauxite. We proposed a calcination pre-treatment with quicklime on SAD to reduce the carbon emission. The Al and AlN are oxidized into AlO after calcination, and the AlO reacts with CaO to form CaO·AlO. The Al in CaO·AlO can be leached out easily with a low concentration of alkali. This review provides a guidance for the recycling of SAD by hydrometallurgy, and proposes a novel idea for the energy and consumption reduction in alumina (Al₂O₃) production.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical properties and energy evolution of thermally damaged red sandstone in high-strain-rate impact tensile tests: Experimental and theoretical analyses","authors":"Shaoxu Hao, Yue Zhai, Shi Liu, Yu Jia","doi":"10.1016/j.jmrt.2024.08.202","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.08.202","url":null,"abstract":"The dynamic tensile strength of rocks affects structural stability in geotechnical applications requiring thermal resilience. This study employs a large-diameter (Φ75 mm) split Hopkinson tension bar () to perform high-strain-rate tensile tests on red sandstone specimens subjected to thermal treatments at temperatures up to 1200 °C. However, specimens heated to 1200 °C transitioned to an amorphous melt phase, making tensile tests infeasible. The novel large-diameter technique improves the test efficiency by using double reinforcement and an adhesive to attach the specimen to the bar. An energy-based damage variable and a comprehensive rock brittleness index are used to assess the effects of the strain rate and thermal conditions on the specimens' mechanical behavior and energy dissipation. Further, an innovative dissipated energy model () describes the intrinsic nonlinearities of the rock's dissipated energy dynamics and their crucial influences on the pre-peak stress responses. A dual-threshold model is utilized to describe thermal strengthening or weakening, revealing fundamental insights into the energy mechanics of rock failure, which are vital for the integrity of high-temperature geotechnical systems.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"134 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Wang, Xiaoxue Wang, Jie Zhou, Chunmiao Liu, Jie Liu, Guanhui Gao
{"title":"Influence of ultraviolet illumination on the corrosion behavior of 7A04 aluminum alloy in salt solutions with different pH values","authors":"Bin Wang, Xiaoxue Wang, Jie Zhou, Chunmiao Liu, Jie Liu, Guanhui Gao","doi":"10.1016/j.jmrt.2024.08.201","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.08.201","url":null,"abstract":"This paper investigated the influence of ultraviolet (UV) illumination on the corrosion behavior of 7A04 aluminum alloy in 3.5% NaCl solutions with various pH values (, 7.0, and 10.0) using weight loss measurement, electrochemical methods, and surface analysis techniques. The research results indicated that the corrosion products of 7A04 alloy in salt solutions with different pH values all exhibited n-type semiconductor properties and could trigger the photovoltaic effect under UV illumination. Simultaneously, UV illumination reduced the compactness of the corrosion products, inhibited the enrichment of copper compounds (CuO), and promoted the generation of hydroxyl radicals in the solution. Therefore, UV illumination significantly accelerated the corrosion process of 7A04 alloy, with the overall acceleration effect ranking as follows: alkaline > neutral > acidic. In addition, the corrosion mechanism of 7A04 alloy in the test solutions with and without UV illumination was also discussed in this paper.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing mechanical properties and corrosion resistance of Fe–Cr–B–Mo alloy via the 'Divide and Conquer' strategy for Ti regulation","authors":"Zicheng Ling, Wenguang Yang, Xingxing Wang, Xianman Zhang, Junyi Jiang, Zenglei Ni, Jin Peng, Zhipeng Yuan, Jianjun Shi, Weiping Chen","doi":"10.1016/j.jmrt.2024.08.149","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.08.149","url":null,"abstract":"The corrosion of molten aluminium on components in the aluminium industry poses a significant bottleneck, hindering the development of aluminium products and equipment. This study focused on the Fe–Cr–B–Mo alloy, addressing challenges related to the susceptibility of the matrix to corrosion, the excessive brittleness of MB borides (M = Fe, Cr, etc.), and the detachment of corrosion products. A comprehensive study was performed to study the microstructure evolution, mechanical properties, and corrosion behavior of Fe–Cr–B–Mo alloy, considering the 'Divide and Conquer' strategy for Ti regulation. The findings indicate that the heterogeneous nucleation, induced by in situ TiB particles, significantly impacts the refinement of MB borides size and enhances the matrix strength. Notably, the addition of 4.5 wt. % Ti to the T3 alloy significantly enhances its mechanical properties and corrosion resistance. The T3 alloy exhibits an impact toughness of 32.4 kJ/m and a compressive fracture strain of 19.5 %, representing a considerable increase of 58 % and 167 % over the Ti-free alloy, respectively. Furthermore, the alloy has a volume loss rate of 11.0 mm cm h, which is substantially lower, by 73.5 % compared to H13 steel and by 21.4 % compared to the Ti-free alloy. The synergistic presence of TiB and MB borides, along with their corrosion products, functions as an effective diffusion barrier against molten aluminium corrosion.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of TiO2 content on the thermal control properties of Al2O3-xTiO2 composite coatings prepared by supersonic plasma spraying technology","authors":"Xuewu Li, Hongyu Liu, Weiling Guo, Longlong Zhou, Qingxin Cui, Xiaofeng Deng, Wenxiang Shu, Tian Shi, Zhiguo Xing, Haidou Wang","doi":"10.1016/j.jmrt.2024.08.199","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.08.199","url":null,"abstract":"The main challenge faced by spacecraft is the large temperature difference in its operating environment. Thermal control coatings prepared on spacecraft and instrument surfaces are currently the most efficient ways for heat dissipation and control. In this work, AlO-TiO composite coatings with different TiO contents were prepared on 7075-Al alloy substrate by supersonic plasma spraying technology. The microstructure, phase composition, mechanical properties, thermal control properties, and corrosion resistances of the coatings were investigated. The raw stock feeds were mainly composed of α-AlO and anatase TiO, but the coatings were mainly γ-AlO and rutile TiO. The average Vickers microhardness of the coatings decreased from 1198.9 to 810.4 HV with the increase of TiO contents, but the elastic modulus increased from 158.5 to 244.3 GPa. The thermal control properties of the coatings were promoted with the growth of TiO contents, and the absorptance increased from 27.1 to 89.2% with the emittance from 83.7 to 86.5%. The corrosion potential and corrosion resistance of the coating gradually increased with TiO content due to its gradually improved hydrophobicity. This work broadens the application boundary of AlO-TiO composite coating and provides an innovative idea for material selection of thermal control coatings.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinghua Zhang, Hongyan Lv, Shuaifei Yan, Rui-dong Fu, Yi-jun Li
{"title":"Microstructure and cryogenic mechanical properties of dissimilar friction stir welding joints between nitrogen-alloyed CoCrFeMnNi high-entropy alloy and high-manganese austenite steel","authors":"Jinghua Zhang, Hongyan Lv, Shuaifei Yan, Rui-dong Fu, Yi-jun Li","doi":"10.1016/j.jmrt.2024.08.184","DOIUrl":"https://doi.org/10.1016/j.jmrt.2024.08.184","url":null,"abstract":"The microstructures and cryogenic mechanical properties of dissimilar friction stir welding (FSW) joints between nitrogen-alloyed CoCrFeMnNi high-entropy alloys (HEAs) and Fe–32.1Mn–7.5Cr–0.6Mo–1.2 N steel were investigated. The results reveal that defect-free dissimilar joints can be achieved through FSW. Furthermore, the grains of nitrogen-alloyed CoCrFeMnNi HEAs in the stir zone of the dissimilar joint are significantly more refined than those of Fe–32.1Mn–7.5Cr–0.6Mo–1.2 N steel. Joint efficiency at room and low temperature both exceed 90% of the base metal. Moreover, the cryogenic yield and ultimate strength of the dissimilar joints are higher than those recorded at room temperature. The fracture position is at the heat-affected zone of HEAs under two temperature conditions.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"110 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}