{"title":"PRODIGY+: a robust progressive upgrade approach for elastic optical networks","authors":"Shrinivas Petale;Aleksandra Knapinska;Egemen Erbayat;Piotr Lechowicz;Krzysztof Walkowiak;Shih-Chun Lin;Motoharu Matsuura;Hiroshi Hasegawa;Suresh Subramaniam","doi":"10.1364/JOCN.525392","DOIUrl":"10.1364/JOCN.525392","url":null,"abstract":"Elastic optical networks (EONs) operating in the C-band have been widely deployed worldwide. However, two major technologies—multiband elastic optical networks (MB-EONs) and space division multiplexed elastic optical networks (SDM-EONs)—can significantly increase network capacity beyond traditional EONs. A one-time greenfield deployment of these flexible-grid technologies may not be practical, as existing investments in flexible-grid EONs need to be preserved and ongoing services must face minimal disruption. Therefore, we envision the coexistence of flexible-grid, multiband, and multicore technologies during the brownfield migration. Each technology represents a tradeoff between higher capacity and greater deployment overhead, directly impacting network performance. Moreover, as traffic demands continue rising, capacity exhaustion becomes inevitable. Considering the different characteristics of these technologies, we propose a robust network planning solution called Progressive Optics Deployment and Integration for Growing Yields (PRODIGY+) to gradually migrate current C-band EONs. PRODIGY+ employs proactive measures inspired by the Swiss Cheese Model, making the network robust to traffic peaks while meeting service level agreements. The upgrade strategy enables a gradual transition to minimize migration costs while continuously supporting increasing traffic demands. We provide a detailed comparison of our proposed PRODIGY+ strategy against baseline strategies, demonstrating its superior performance.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 9","pages":"E48-E60"},"PeriodicalIF":4.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141829895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetry-free routing and spectrum assignment: a universal algorithm based on first-fit","authors":"George N. Rouskas","doi":"10.1364/JOCN.521978","DOIUrl":"10.1364/JOCN.521978","url":null,"abstract":"First-fit (FF) is a well-known and widely deployed algorithm for spectrum assignment (SA), but until our recent study [J. Opt. Commun. Netw.14, 165 (2022)], investigations of the algorithm had been experimental in nature and no formal properties of the algorithm with respect to SA were known. In this work, we make two contributions. First, we show that FF is a universal algorithm for the SA problem in the sense that, for any variant, 1) it can be used to construct solutions equivalent to, or better than, any solution obtained by any other algorithm, and 2) it can construct an optimal solution. This universality property applies to both the min-max and min-frag objectives and to variants of the SA problem with or without guard band constraints. Consequently, the spectrum symmetry-free model of our recent study [J. Opt. Commun. Netw.14, 165 (2022)] extends to all known SA variants, which therefore reduce to permutation problems. Second, we extend the spectrum symmetry-free model to the routing and spectrum assignment (RSA) problem in general topologies. This model allows for the design of more efficient algorithms as it eliminates from consideration an exponential number of equivalent symmetric solutions. By sidestepping symmetry, the RSA solution space is naturally and optimally decomposed into a routing space and a connection permutation space. Building upon this property, we introduce a two-parameter, symmetry-free universal algorithm that can be used to tackle any RSA variant in a uniform manner. The algorithm is amenable to multi-threaded execution to speed up the search process, and the value of the parameters can be adjusted to strike a balance between running time and solution quality. Our evaluation provides insight into the relative benefits of path diversity (which determines the size of the routing space) and connection diversity (which determines the size of the permutation space).","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 9","pages":"E11-E22"},"PeriodicalIF":4.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141663277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DNN distributed inference offloading scheme based on transfer reinforcement learning in metro optical networks","authors":"Shan Yin;Lihao Liu;Mengru Cai;Yutong Chai;Yurong Jiao;Zheng Duan;Yian Li;Shanguo Huang","doi":"10.1364/JOCN.533206","DOIUrl":"10.1364/JOCN.533206","url":null,"abstract":"With the development of 5G and mobile edge computing, deep neural network (DNN) inference can be distributed at the edge to reduce communication overhead and inference time, namely, DNN distributed inference. DNN distributed inference will pose challenges to the resource allocation problem in metro optical networks (MONs). Efficient cooperative allocation of optical communication and computational resources can facilitate high-bandwidth and low-latency applications. However, it also introduces greater complexity to the resource allocation problem. In this study, we propose a joint resource allocation method using high-performance transfer deep reinforcement learning (T-DRL) to maximize network throughput. When the topologies or characteristics of MONs change, T-DRL requires only a small amount of transfer training to re-converge. Considering that the generalizability of conventional methods is inversely related to optimization performance, we develop two deployment schemes (i.e., single-agent and multi-agent) based on the T-DRL method to explore the performance of T-DRL. Simulation results demonstrate that T-DRL greatly reduces the blocking probability and average inference time of DNN inference requests. Besides, the multi-agent scheme can maintain a lower blocking probability of requests in MONs, while the single-agent has a shorter convergence time after network changes.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 9","pages":"852-867"},"PeriodicalIF":4.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141668118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Double-link-failure-tolerant shared protection for fully coupled/half-split switchable point-to-multipoint coherent optical systems","authors":"Takahiro Kodama;Tomoya Nakagawa;Shota Eguchi;Keiji Shimada;Ryosuke Matsumoto","doi":"10.1364/JOCN.511029","DOIUrl":"10.1364/JOCN.511029","url":null,"abstract":"Beyond 5G, the next-generation wireless communication standard requires an optical communication network with a more reliable point-to-multipoint system. A highly reliable, futuristic point-to-multipoint coherent optical system must update wavelength-division-multiplexing-based passive optical networks to a more disaster-resistant architecture that can switch between bypass and backup links. We propose, to our knowledge, a novel link-pair shared protection that can respond locally to double-link failures that result from a significant disaster. We validate the high availability of several network configurations, assuming a double-link disconnection, can be obtained irrespective of the transmission distance of the feeder fiber. We experimentally demonstrate link-pair shared protection with bidirectional wavelength pre-assignment for two of the four feeder fiber failures and validate a penalty of less than 2 dB for double-link failures. Furthermore, we prove that reconnection can be performed with a penalty of at most 2 dB in an experiment with shared protection with a single-link broadcast-and-select function that can manage partial double-link failures using a simple configuration.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 9","pages":"832-842"},"PeriodicalIF":4.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141686877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linsheng Fan;Yanfu Yang;Qun Zhang;Siyu Gong;Yuchen Jia;Chen Cheng;Yong Yao
{"title":"Transceiver impairment robust and joint monitoring of PDL, DGD, and CD using frequency domain pilot tones for digital subcarrier multiplexing systems","authors":"Linsheng Fan;Yanfu Yang;Qun Zhang;Siyu Gong;Yuchen Jia;Chen Cheng;Yong Yao","doi":"10.1364/JOCN.525128","DOIUrl":"10.1364/JOCN.525128","url":null,"abstract":"Optical performance monitoring is vital for enabling dynamically reconfigurable optical networks. This paper introduces a monitoring scheme that is robust to transceiver impairments for coherent digital subcarrier multiplexing (DSCM) systems that simultaneously monitors polarization-dependent loss (PDL), differential group delay (DGD), and chromatic dispersion (CD). In the proposed scheme, a pair of frequency domain pilot tones (FPTs) are inserted into the \u0000<tex>${X}$</tex>\u0000 and \u0000<tex>${Y}$</tex>\u0000 polarizations of the transmitted dual-polarization signal. Both the signal and the FPTs endure identical channel impairments during fiber transmission. At the receiver side, the transmitted FPTs are extracted to monitor the channel impairments. We begin by establishing a simplified system model using a single frequency tone to analyze the effects of system impairments on the frequency domain pilots. Based on this model, CD, PDL, and DGD are jointly and accurately estimated. In addition, the influences of temporal, amplitude, and phase mismatches between in-phase (I) and quadrature (Q) components of transceivers on channel impairment monitoring are completely eliminated. This achieves a channel impairment monitoring scheme that is robust to transceiver impairments. Experimental verification shows that the proposed scheme can jointly and accurately estimate a wide range of CD, PDL, and DGD. Additionally, the proposed monitoring scheme demonstrates strong robustness against transceiver impairments, rapid polarization fluctuations, and amplified spontaneous emission (ASE) noise.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"822-831"},"PeriodicalIF":4.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the JOCN Special Issue on the Impact of Photonic Technologies on Future Optical Networks","authors":"Michela Svaluto Moreolo;Joaquim Ferreira Martins-Filho","doi":"10.1364/JOCN.536639","DOIUrl":"10.1364/JOCN.536639","url":null,"abstract":"This Special Issue contains a collection of twelve papers on the impact of photonic technologies on future optical networks, including extensions of selected works presented at the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC) held on 5–9 November 2023 in Castelldefels, Spain. We present a brief introduction followed by an overview of the papers.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"IPT1-IPT3"},"PeriodicalIF":4.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10619707","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141654732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of acquisition patterns for establishing inter CubeSat optical communications","authors":"Rene Ruddenklau;Georg Schitter","doi":"10.1364/JOCN.518004","DOIUrl":"10.1364/JOCN.518004","url":null,"abstract":"As commercially available CubeSats with up to six standardized units cannot achieve the precision required for an instantaneous establishment of a low-divergence optical inter-satellite link, search patterns are used to scan the remaining field of uncertainty. This analysis optimizes the simultaneously executed search pattern combinations of the two laser communication terminals involved. Based on a Monte Carlo simulation, the perturbations on these links are investigated, and the corresponding key performance parameters such as mean acquisition time and success rate are calculated. The results are penalized by the hardware specifications, including actuator and sensor bandwidths, given by their design. Residual attitude error components imply a significant influence on the acquisition process and are therefore presented within this work. The pattern pairs are fed through an automated optimization algorithm to tune and analyze them. In this particular scenario of two CubeISL models, the mean duration for a first detected acquisition hit is within a pattern period of 3.2 s for the best performing pairs spiral-rose and lissajous-rose. Assuming an uncertainty field of \u0000<tex>${pm}0.2;{rm deg}$</tex>\u0000 due to limited attitude knowledge, success rates between 82.3% and 99.9% are achieved.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"814-821"},"PeriodicalIF":4.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620312","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum key distribution in optical fibers: a comprehensive design view of the overall quantum layer beyond transmission","authors":"Annachiara Pagano;Roberto Mercinelli;Maurizio Valvo;Antonio Manzalini","doi":"10.1364/JOCN.522626","DOIUrl":"10.1364/JOCN.522626","url":null,"abstract":"This paper reports the network operator point of view about the introduction of quantum key distribution (QKD) in optical networks to secure the data plane and/or specific applications, focusing on the design aspects that go beyond pure transmission. The functional architecture of a quantum key distribution network is depicted focusing on the integration in the existing telecommunications infrastructure. Some use cases of the utilization of the QKD layer, presenting results from in-field demonstrations, are reported together with a technology agnostic numerical model about resource sharing in a metropolitan area network environment.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"D111-D118"},"PeriodicalIF":4.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141687836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Packet-optical transport network for future radio infrastructure","authors":"Paola Iovanna;Alberto Bianchi;Alessandra Bigongiari;Giulio Bottari;Luca Giorgi;Simone Marconi;Marzio Puleri;Stefano Stracca;Francesco Testa;Fabio Ubaldi;Roberto Sabella","doi":"10.1364/JOCN.522775","DOIUrl":"https://doi.org/10.1364/JOCN.522775","url":null,"abstract":"The advent of 6G is expected to transform connectivity by necessitating robust and scalable transport networks, capable of managing the escalating demands for enhanced bandwidth, negligible latency, and heightened network automation. The progression towards centralized radio access networks and the cloudification of network functions introduce additional requirements to the transport network. Addressing these demands, the integration of packet and optical systems combines packet flexibility with the high bandwidth and low latency of optical systems, aiming for a balance between performance, efficiency, and functionality. This process considers cost and the reuse of existing infrastructure towards a seamless transition to 6G. The concept of a Mini-ROADM, a cost-effective, energy-efficient optical switch created using silicon photonics, is presented and demonstrated in a ring network application. The role of a transport-aware end-to-end orchestrator in coordinating resources across radio, transport, and cloud domains to ensure a diverse range of quality-of-service levels is also discussed. A system demonstrator that highlights the integration of packet and optical layers and the concrete application of these concepts in a network environment is presented.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"D96-D110"},"PeriodicalIF":4.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. B. F. Pinto;L. Carneiro de Souza;T. P. V. Andrade;E. S. Lima;L. G. Silva;F. M. Portelinha;E. Lee Anderson;Arismar Cerqueira S.
{"title":"Power-over-fiber-based optical wireless communication systems towards 6G","authors":"F. B. F. Pinto;L. Carneiro de Souza;T. P. V. Andrade;E. S. Lima;L. G. Silva;F. M. Portelinha;E. Lee Anderson;Arismar Cerqueira S.","doi":"10.1364/JOCN.522583","DOIUrl":"https://doi.org/10.1364/JOCN.522583","url":null,"abstract":"This paper reports two implementations of power-over-fiber (PoF) solutions applied to radio-over-fiber (RoF) and optical wireless communication (OWC) systems, in the context of an industrial environment. We employ a conventional 62.5-µm multimode fiber (MMF) to deliver optical power to different communication links based on RoF, free-space optics (FSO), and visible light communication (VLC) technologies aiming beyond 5G (B5G) and 6G applications. First, a 3.5-GHz 5G New Radio (5G NR) signal is transmitted throughout a 20-km single-mode optical fiber (SMF) link using RoF technology. Regarding the PoF system, a 5-W optical power is transmitted through a 100-m MMF link. A photovoltaic power converter (PPC) and a DC/DC converter are employed to convert the power from the optical to the electrical domain and adjust the voltage level, respectively, with the purpose of energizing a remote RoF module. The attainable optical and electrical power transmission efficiencies (OPTE and PTE) are 80% and 19%, respectively. Posterior, a second PoF system is implemented to power a hybrid RoF/FSO/VLC B5G system, comprising a 200-m MMF and an additional DC/DC converter. Over 10.5 W of optical power is transmitted to feed an electrical amplifier (EA) and a white LED from the VLC link. In this configuration, we achieve 78% and 18.5% of OPTE and PTE, respectively. Furthermore, a performance investigation based on the root mean square error vector magnitude (\u0000<tex>${{rm EVM}_{{rm RMS}}}$</tex>\u0000) metric is conducted to evaluate the signal using the implemented PoF systems and a conventional electrical power supply. In the first implementation, a throughput of 600 Mbps is achieved with 100-MHz bandwidth without performance degradation, when compared to the conventional-powered RoF system, whereas, in the second implementation, 60-Mbps throughput is achieved when employing the FSO and VLC technologies simultaneously, demonstrating the applicability and potential of the PoF technique for B5G and 6G industrial communications.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 8","pages":"D86-D95"},"PeriodicalIF":4.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}