Journal of Optical Communications and Networking最新文献

筛选
英文 中文
Low-complexity end-to-end deep learning framework for 100G-PON 面向 100G-PON 的低复杂度端到端深度学习框架
IF 4 2区 计算机科学
Journal of Optical Communications and Networking Pub Date : 2024-10-18 DOI: 10.1364/JOCN.532742
Yongxin Xu;Xiaokai Guan;Wenqing Jiang;Xudong Wang;Weisheng Hu;Lilin Yi
{"title":"Low-complexity end-to-end deep learning framework for 100G-PON","authors":"Yongxin Xu;Xiaokai Guan;Wenqing Jiang;Xudong Wang;Weisheng Hu;Lilin Yi","doi":"10.1364/JOCN.532742","DOIUrl":"https://doi.org/10.1364/JOCN.532742","url":null,"abstract":"End-to-end learning allows communication systems to achieve optimal performance compared with conventional blockwise structure design. By modeling the channel with neural networks and training the transmitter and receiver on this differentiable channel, the whole system can be jointly optimized. However, in existing schemes, channel modeling methods, such as the generative adversarial network and long short-term memory network, have complex architectures and cannot track channel changes, leading to less effective end-to-end learning. Meanwhile, the complexity of neural networks deployed at the transmitter and receiver is too high for practical applications. In this work, we propose an efficient and low-complexity end-to-end deep learning framework and experimentally validate it on a 100G passive optical network. It uses a noise adaptation network to model channel response and noise distribution and employs offline pretraining and online tracking training to improve the efficiency and accuracy of channel modeling. For the transmitter, it consists of a pattern-dependent look-up table (PDLUT) based on a neural network (NN-PDLUT) with a single convolutional layer. Further, the receiver is also an NN with a single convolutional layer; thus, the end-to-end signal processing is extremely simple. The experimental results show that end-to-end learning improves the receiver sensitivity by 0.85 and 1.59 dB compared with receiver-only equalization based on Volterra nonlinear equalization (VNLE) and joint equalization based on a PDLUT and a feed-forward equalizer, respectively. Moreover, the number of multiply–accumulate operations consumed by the transmitter and receiver in the end-to-end learning scheme is reduced by 75.7% compared with VNLE-based receiver-only equalization.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical networking that exploits massive wavelength/spectrum and spatial parallelisms 利用大规模波长/频谱和空间并行性的光网络技术
IF 4 2区 计算机科学
Journal of Optical Communications and Networking Pub Date : 2024-10-16 DOI: 10.1364/JOCN.532594
Hiroshi Hasegawa
{"title":"Optical networking that exploits massive wavelength/spectrum and spatial parallelisms","authors":"Hiroshi Hasegawa","doi":"10.1364/JOCN.532594","DOIUrl":"https://doi.org/10.1364/JOCN.532594","url":null,"abstract":"As DWDM transmission offers enhanced wavelength/spectrum parallelism, the capacity of optical networks has been substantially increased. Due to the theoretical capacity limit of C-band transmission over single-mode fibers, research into new frequency bands and parallel fibers has become very active. However, the hardware scale of current optical cross-connect nodes will explode with greater wavelength/spectrum and spatial parallelism. Three optical node/network architectures are presented in this paper that take advantage of one or both of these parallelism technologies. These architectures will provide a baseline for cost-effective and bandwidth-abundant future optical networks based on massive parallelism.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking framework for resource allocation algorithms in multicore fiber elastic optical networks 多核光纤弹性光网络资源分配算法基准框架
IF 4 2区 计算机科学
Journal of Optical Communications and Networking Pub Date : 2024-10-15 DOI: 10.1364/JOCN.534257
Juan Pinto-Rios;Barbara Dumas Feris;Christofer Vasquez;Gabriel Saavedra;Danilo Borquez-Paredes;Nicolas Jara;Ricardo Olivares;Saquib Amjad;Ariel Leiva;Carmen Mas-Machuca
{"title":"Benchmarking framework for resource allocation algorithms in multicore fiber elastic optical networks","authors":"Juan Pinto-Rios;Barbara Dumas Feris;Christofer Vasquez;Gabriel Saavedra;Danilo Borquez-Paredes;Nicolas Jara;Ricardo Olivares;Saquib Amjad;Ariel Leiva;Carmen Mas-Machuca","doi":"10.1364/JOCN.534257","DOIUrl":"https://doi.org/10.1364/JOCN.534257","url":null,"abstract":"The lack of standards in the performance evaluation of new resource allocation algorithms in multicore fiber elastic optical networks (MCF-EONs) compromises the fairness when comparing them with the state of the art. This paper reviews the different transmission parameters, network parameters, performance metrics, and baselines used by the recent proposals to build a framework for future benchmarking of such algorithms according to the nature of the network operation, whether static or dynamic. This framework aims to provide standards regarding evaluation criteria, scenarios, and performance metrics, as well as recommendations concerning technology advances to promote methodology and reproducibility in further related studies.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zero-cost upgrade to a multi-fiber network with partial lane-change capabilities 零成本升级为具有部分变道功能的多光纤网络
IF 4 2区 计算机科学
Journal of Optical Communications and Networking Pub Date : 2024-10-15 DOI: 10.1364/JOCN.533906
Oleg Karandin;Francesco Musumeci;Gabriel Charlet;Yvan Pointurier;Massimo Tornatore
{"title":"Zero-cost upgrade to a multi-fiber network with partial lane-change capabilities","authors":"Oleg Karandin;Francesco Musumeci;Gabriel Charlet;Yvan Pointurier;Massimo Tornatore","doi":"10.1364/JOCN.533906","DOIUrl":"https://doi.org/10.1364/JOCN.533906","url":null,"abstract":"Growing capacity requirements are leading to the deployment of multiple fibers in each optical network link. Even though deploying state-of-the-art multi-fiber network architectures with stacked and independent fiber layers simplifies network design and control, spectrum can be used more efficiently if the optical-network nodes allow fiber layers to be interconnected, i.e., if the so-called lane change is enabled. Unfortunately, lane change in high-degree optical nodes requires wavelength selective switches (WSSs) with a high number of ports, which is prohibitively costly or even unfeasible with current WSS technology. Instead, lane change in low-degree optical nodes can be enabled at no extra cost, using WSS ports that are otherwise left empty. In this study, we describe our proposal for a multi-fiber network with partial lane-change capabilities and perform a simulative study to identify the advantages of this architecture, as well as discuss the emerging resource allocation challenges associated with it. We demonstrate that, by enabling lane change in degree-2 nodes, we can increase network throughput by 3% and restore 5%–8% more traffic in the case of single- and double-link failures at no additional equipment cost.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SkipNet: an adaptive neural network equalization algorithm for future passive optical networking SkipNet:未来无源光网络的自适应神经网络均衡算法
IF 4 2区 计算机科学
Journal of Optical Communications and Networking Pub Date : 2024-10-09 DOI: 10.1364/JOCN.528490
Stephen L. Murphy;Paul D. Townsend;Cleitus Antony
{"title":"SkipNet: an adaptive neural network equalization algorithm for future passive optical networking","authors":"Stephen L. Murphy;Paul D. Townsend;Cleitus Antony","doi":"10.1364/JOCN.528490","DOIUrl":"10.1364/JOCN.528490","url":null,"abstract":"In this paper, we propose an original adaptive neural network equalizer (NNE) algorithm named SkipNet, which is suitable for rapid training on a packet-by-packet basis for burst-mode non-linear equalization in upstream PON transmission. SkipNet uses the simple LMS algorithm and avoids complex neural network training algorithms such as backpropagation and mini-batch training. We demonstrate SkipNet on captured continuous mode 100 Gbit/s PAM4 signals using an SOA preamplifier to achieve the challenging 29 dB PON optical loss budget. The adaptive SkipNet equalizer is shown to overcome combinations of severe SOA patterning effects and fiber dispersion impairments to achieve \u0000<tex>${gt}{29};{rm dB}$</tex>\u0000 dynamic range back-to-back and \u0000<tex>${gt}{22.9};{rm dB}$</tex>\u0000 dynamic range for up to 81.6 ps/nm accumulated dispersion. It can adapt in as little as 250 training symbols to each impairment scenario, which is equivalent to existing FFE/DFE solutions, while matching the non-linear performance of previously proposed static NNE solutions. To the best of our knowledge, SkipNet is the first ever adaptive NNE framework that can realistically be trained and adapted on a packet-by-packet basis and within strict PON packet preamble lengths.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10712641","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141800990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling wavelength selective switches for multi-band and space-division-multiplexed networks 为多频带和空分多路复用网络扩展波长选择开关
IF 4 2区 计算机科学
Journal of Optical Communications and Networking Pub Date : 2024-10-08 DOI: 10.1364/JOCN.531337
Haoyu Wei;Weixin Chen;Haining Yang
{"title":"Scaling wavelength selective switches for multi-band and space-division-multiplexed networks","authors":"Haoyu Wei;Weixin Chen;Haining Yang","doi":"10.1364/JOCN.531337","DOIUrl":"https://doi.org/10.1364/JOCN.531337","url":null,"abstract":"This paper investigates the practical scalability of wavelength selective switching technology for the emerging multi-band and space-division-multiplexed (SDM) networks. Wavelength selective switching architectures are introduced for multi-band SDM networks. The switching capacity is analyzed for both weakly coupled and strongly coupled SDM networks. Key bottlenecks for scaling up toward multi-band and more spatial modes are identified. Contrary to the conventional view that liquid crystal on silicon (LCOS) was the only technological obstacle, the manufacturability of free-space optics with high numerical apertures and constraints on the optical dimensions also brought significant challenges for the development of highly integrated wavelength selective switches for multi-band SDM networks.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicore-fiber submarine systems 多芯光纤潜艇系统
IF 4 2区 计算机科学
Journal of Optical Communications and Networking Pub Date : 2024-10-08 DOI: 10.1364/JOCN.532163
Eduardo F. Mateo
{"title":"Multicore-fiber submarine systems","authors":"Eduardo F. Mateo","doi":"10.1364/JOCN.532163","DOIUrl":"https://doi.org/10.1364/JOCN.532163","url":null,"abstract":"This paper reviews and analyzes multicore-fiber technologies in the context of submarine networks. As global/transcontinental capacity continues to grow at a large and steady pace, the subsea industry is challenged to deliver technologies that provide large-capacity networks in a faster, greener, and cost-effective fashion. Multicore fiber has been considered as a serious candidate for next-generation systems with the ability to maintain standard cable size at large core counts. This paper analyzes the technoeconomics of next-generation submarine systems including variables such as equipment size versus marine cost and other critical elements (not analyzed before, to our knowledge) for submarine system implementation. In this context, this paper also analyzes the state-of-the-art of multicore subsystems and components and discusses their roadmaps, requirements, and evolution toward the realization of a multicore ecosystem for next-generation SDM systems.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental dataset for developing and testing ML models in optical communication systems 用于开发和测试光通信系统 ML 模型的实验数据集
IF 4 2区 计算机科学
Journal of Optical Communications and Networking Pub Date : 2024-10-04 DOI: 10.1364/JOCN.531788
Caio Santos;Abdelrahmane Moawad;Behnam Shariati;Robert Emmerich;Pooyan Safari;Colja Schubert;Johannes K. Fischer
{"title":"Experimental dataset for developing and testing ML models in optical communication systems","authors":"Caio Santos;Abdelrahmane Moawad;Behnam Shariati;Robert Emmerich;Pooyan Safari;Colja Schubert;Johannes K. Fischer","doi":"10.1364/JOCN.531788","DOIUrl":"https://doi.org/10.1364/JOCN.531788","url":null,"abstract":"Due to the scarcity of diverse and well-organized public datasets, individual research organizations are often forced to develop and utilize their own datasets. However, the utilization of machine learning (ML) models in optical communications and networks heavily depends on the existence of high-quality datasets, especially covering the various parameters to be optimized in wavelength-division multiplexing (WDM) systems. In this work, we present a public dataset for developing and testing ML models. The dataset is developed in a laboratory setting and includes 12,672 samples including data points with different modulation formats, symbol rates, distances, WDM channel allocation profiles, etc. Each data point offers more than 60 features, revealing almost every aspect of the transmission setup. Moreover, we provide optical spectra of the entire C-band as well as a constellation diagram of the channel under test for all the data points. The diversity and extensiveness of the dataset alongside a well-structured document would allow plenty of use-cases and studies to be carried out covering quality of transmission (QoT) studies, optical spectrum analysis, constellation diagram modeling, digital twin evaluation, etc. Similar to our previous efforts, the current dataset aims to facilitate collaboration by offering a way for fair comparison of research outcomes in data analysis within the domain of optical communication systems.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Implementation of HetNet architectures based on FSO, VLC, RoF, and photonics-based RF generation toward 6G applications 基于 FSO、VLC、RoF 和基于光子技术的射频生成技术实现面向 6G 应用的 HetNet 架构
IF 4 2区 计算机科学
Journal of Optical Communications and Networking Pub Date : 2024-09-30 DOI: 10.1364/JOCN.530373
Celso Henrique de Souza Lopes;Tomas Powell Villena Andrade;Luiz Augusto Melo Pereira;Evandro Conforti;Arismar Cerqueira Sodre Junior
{"title":"Implementation of HetNet architectures based on FSO, VLC, RoF, and photonics-based RF generation toward 6G applications","authors":"Celso Henrique de Souza Lopes;Tomas Powell Villena Andrade;Luiz Augusto Melo Pereira;Evandro Conforti;Arismar Cerqueira Sodre Junior","doi":"10.1364/JOCN.530373","DOIUrl":"https://doi.org/10.1364/JOCN.530373","url":null,"abstract":"This paper presents two distinct network architectures designed to address the demands of 5G/6G applications. The first architecture is an analog radio-over-fiber (RoF) optical fronthaul operating in the V-band at 60 GHz, integrated within a wavelength-division multiplexing passive optical network (WDM-PON). This setup employs photonic techniques for RF signal generation, specifically using carrier-suppressed double sideband (CS-DSB) modulation via Mach–Zehnder modulators (MZMs), enabling efficient frequency multiplication and signal transport. Experimental results demonstrate its ability to achieve a data rate of approximately 11.8 Gbit/s, meeting the requirements for 5G/6G cell densification. The second architecture is a heterogeneous network (HetNet) that combines fiber-wireless (FiWi), free space optics (FSO), and visible light communication (VLC) technologies in a unified network configuration designed for indoor 6G solutions. This HetNet architecture was tested at 39 GHz and features a 20 km optical fiber midhaul, an FSO fronthaul, and a dual VLC/RF access network. The setup was evaluated based on the root mean square error vector magnitude (\u0000<tex>${{rm EVM}_{{rm RMS}}}$</tex>\u0000) requirements, with results indicating satisfactory coexistence of the employed technologies, achieving a total data throughput of 1.5 Gbit/s.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping-finding input-parameter refinement paradigm for a dynamic multiband optical network digital twin: the Raman amplifier modeling case 动态多波段光网络数字孪生的映射-查找输入参数细化范例:拉曼放大器建模案例
IF 4 2区 计算机科学
Journal of Optical Communications and Networking Pub Date : 2024-09-27 DOI: 10.1364/JOCN.539231
Yihao Zhang;Xiaomin Liu;Qizhi Qiu;Yichen Liu;Lilin Yi;Weisheng Hu;Qunbi Zhuge
{"title":"Mapping-finding input-parameter refinement paradigm for a dynamic multiband optical network digital twin: the Raman amplifier modeling case","authors":"Yihao Zhang;Xiaomin Liu;Qizhi Qiu;Yichen Liu;Lilin Yi;Weisheng Hu;Qunbi Zhuge","doi":"10.1364/JOCN.539231","DOIUrl":"https://doi.org/10.1364/JOCN.539231","url":null,"abstract":"Accurate quality-of-transmission (QoT) estimation tools are crucial to building digital twins (DTs) for optical networks. However, the input-parameter inaccuracy deteriorates the estimation accuracy of the physical models. To address this problem, an input-parameter refinement (IR) paradigm aiming at finding the mappings from uncertain parameters to their corresponding true values is proposed. The primary advantage of the IR paradigm, as demonstrated in this study for Raman amplifiers (RAs), lies in its applicability to dynamic optical networks, where system parameters such as loading conditions and optical device configurations are subject to frequent variations. The use of the proposed paradigm to refine the model of RAs is discussed in detail, while its applicability to other types of devices requires further investigation. The inaccuracy of fiber parameters, signal power, and pump power are taken into account. The particle swarm optimization (PSO) algorithm is utilized to address the problem of the coupling of these parameter inaccuracies. Experiments over a C + L band are conducted. In a single-span scenario, results show the proposed IR scheme can lower the physics-based RA model’s mean prediction error from \u0000<tex>${sim}{0.92};{rm dB}$</tex>\u0000 to \u0000<tex>${sim}{0.20};{rm dB}$</tex>\u0000 and lower the maximum absolute error (MAE) from \u0000<tex>${sim}{3.09};{rm dB}$</tex>\u0000 to \u0000<tex>${sim}{1.12};{rm dB}$</tex>\u0000. The proposed IR scheme also exhibits high precision when applied in a two-span scenario, indicating its scalability to multi-span optical multiplexing section (OMS) scenarios. Furthermore, we demonstrate that the proposed IR scheme can also effectively enhance the accuracy of machine learning (ML) models. An IR-aided ML-based model training scheme is proposed. It offers significant advantages in scenarios where data collection from real systems is limited. With the proposed IR paradigm, the practical application of both physics-based models and ML-based models can be facilitated in future dynamic multiband optical networks.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信