{"title":"Bounds of the Solution Set to the Polynomial Complementarity Problem","authors":"Yang Xu, Guyan Ni, Mengshi Zhang","doi":"10.1007/s10957-024-02484-5","DOIUrl":"https://doi.org/10.1007/s10957-024-02484-5","url":null,"abstract":"<p>In this paper, we investigate bounds of solution set of the polynomial complementarity problem. When a polynomial complementarity problem has a solution, we propose a lower bound of solution norm by entries of coefficient tensors of the polynomial. We prove that the proposing lower bound is larger than some existing lower bounds appeared in tensor complementarity problems and polynomial complementarity problems. When the solution set of a polynomial complementarity problem is nonempty, and the coefficient tensor of the leading term of the polynomial is an <span>(R_0)</span>-tensor, we propose a new upper bound of solution norm of the polynomial complementarity problem by a quantity defining by an optimization problem. Furthermore, we prove that when coefficient tensors of the polynomial are partially symmetric, the proposing lower bound formula with respect to tensor tuples reaches the maximum value, and the proposing upper bound formula with respect to tensor tuples reaches the minimum value. Finally, by using such partial symmetry, we obtain bounds of solution norm by coefficients of the polynomial.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"41 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Cristofari, Marianna De Santis, Stefano Lucidi
{"title":"On Necessary Optimality Conditions for Sets of Points in Multiobjective Optimization","authors":"Andrea Cristofari, Marianna De Santis, Stefano Lucidi","doi":"10.1007/s10957-024-02478-3","DOIUrl":"https://doi.org/10.1007/s10957-024-02478-3","url":null,"abstract":"<p>Taking inspiration from what is commonly done in single-objective optimization, most local algorithms proposed for multiobjective optimization extend the classical iterative scalar methods and produce sequences of points able to converge to single efficient points. Recently, a growing number of local algorithms that build sequences of sets has been devised, following the real nature of multiobjective optimization, where the aim is that of approximating the efficient set. This calls for a new analysis of the necessary optimality conditions for multiobjective optimization. We explore conditions for sets of points that share the same features of the necessary optimality conditions for single-objective optimization. On the one hand, from a theoretical point of view, these conditions define properties that are necessarily satisfied by the (weakly) efficient set. On the other hand, from an algorithmic point of view, any set that does not satisfy the proposed conditions can be easily improved by using first-order information on some objective functions. We analyse both the unconstrained and the constrained case, giving some examples.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"48 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Approximation Methods for a Class of Non-Lipschitz Mathematical Programs with Equilibrium Constraints","authors":"Lei Guo, Gaoxi Li","doi":"10.1007/s10957-024-02475-6","DOIUrl":"https://doi.org/10.1007/s10957-024-02475-6","url":null,"abstract":"<p>We consider how to solve a class of non-Lipschitz mathematical programs with equilibrium constraints (MPEC) where the objective function involves a non-Lipschitz sparsity-inducing function and other functions are smooth. Solving the non-Lipschitz MPEC is highly challenging since the standard constraint qualifications fail due to the existence of equilibrium constraints and the subdifferential of the objective function is unbounded due to the existence of the non-Lipschitz function. On the one hand, for tackling the non-Lipschitzness of the objective function, we introduce a novel class of locally Lipschitz approximation functions that consolidate and unify a diverse range of existing smoothing techniques for the non-Lipschitz function. On the other hand, we use the Kanzow and Schwartz regularization scheme to approximate the equilibrium constraints since this regularization can preserve certain perpendicular structure as in equilibrium constraints, which can induce better convergence results. Then an approximation method is proposed for solving the non-Lipschitz MPEC and its convergence is established under weak conditions. In contrast with existing results, the proposed method can converge to a better stationary point under weaker qualification conditions. Finally, a computational study on the sparse solutions of linear complementarity problems is presented. The numerical results demonstrate the effectiveness of the proposed method.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"50 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"State-Dependent Sweeping Processes: Asymptotic Behavior and Algorithmic Approaches","authors":"Samir Adly, Monica G. Cojocaru, Ba Khiet Le","doi":"10.1007/s10957-024-02485-4","DOIUrl":"https://doi.org/10.1007/s10957-024-02485-4","url":null,"abstract":"<p>In this paper, we investigate the asymptotic properties of a particular class of state-dependent sweeping processes. While extensive research has been conducted on the existence and uniqueness of solutions for sweeping processes, there is a scarcity of studies addressing their behavior in the limit of large time. Additionally, we introduce novel algorithms designed for the resolution of quasi-variational inequalities. As a result, we introduce a new derivative-free algorithm to find zeros of nonsmooth Lipschitz continuous mappings with a linear convergence rate. This algorithm can be effectively used in nonsmooth and nonconvex optimization problems that do not possess necessarily second-order differentiability conditions of the data.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"30 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141526728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Proximal Point Method for Quasiconvex Functions in Riemannian Manifolds","authors":"Erik Alex Papa Quiroz","doi":"10.1007/s10957-024-02482-7","DOIUrl":"https://doi.org/10.1007/s10957-024-02482-7","url":null,"abstract":"<p>This paper studies the convergence of the proximal point method for quasiconvex functions in finite dimensional complete Riemannian manifolds. We prove initially that, in the general case, when the objective function is proper and lower semicontinuous, each accumulation point of the sequence generated by the method, if it exists, is a limiting critical point of the function. Then, under the assumptions that the sectional curvature of the manifold is bounded above by some non negative constant and the objective function is quasiconvex we analyze two cases. When the constant is zero, the global convergence of the algorithm to a limiting critical point is assured and if it is positive, we prove the local convergence for a class of quasiconvex functions, which includes Lipschitz functions.\u0000</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"25 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Primal–Dual Stability in Local Optimality","authors":"Matúš Benko, R. Tyrrell Rockafellar","doi":"10.1007/s10957-024-02467-6","DOIUrl":"https://doi.org/10.1007/s10957-024-02467-6","url":null,"abstract":"<p>Much is known about when a locally optimal solution depends in a single-valued Lipschitz continuous way on the problem’s parameters, including tilt perturbations. Much less is known, however, about when that solution and a uniquely determined multiplier vector associated with it exhibit that dependence as a primal–dual pair. In classical nonlinear programming, such advantageous behavior is tied to the combination of the standard strong second-order sufficient condition (SSOC) for local optimality and the linear independent gradient condition (LIGC) on the active constraint gradients. But although second-order sufficient conditons have successfully been extended far beyond nonlinear programming, insights into what should replace constraint gradient independence as the extended dual counterpart have been lacking. The exact answer is provided here for a wide range of optimization problems in finite dimensions. Behind it are advances in how coderivatives and strict graphical derivatives can be deployed. New results about strong metric regularity in solving variational inequalities and generalized equations are obtained from that as well.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"17 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Weighted p-Norm Weight Set Decomposition for Multiobjective Discrete Optimization Problems","authors":"Stephan Helfrich, Kathrin Prinz, Stefan Ruzika","doi":"10.1007/s10957-024-02481-8","DOIUrl":"https://doi.org/10.1007/s10957-024-02481-8","url":null,"abstract":"<p>Many solution algorithms for multiobjective optimization problems are based on scalarization methods that transform the multiobjective problem into a scalar-valued optimization problem. In this article, we study the theory of weighted <span>(p)</span>-norm scalarizations. These methods minimize the distance induced by a weighted <span>(p)</span>-norm between the image of a feasible solution and a given reference point. We provide a comprehensive theory of the set of eligible weights and, in particular, analyze the topological structure of the normalized weight set. This set is composed of connected subsets, called weight set components which are in a one-to-one relation with the set of optimal images of the corresponding weighted <span>(p)</span>-norm scalarization. Our work generalizes and complements existing results for the weighted sum and the weighted Tchebycheff scalarization and provides new insights into the structure of the set of all Pareto optimal solutions.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"18 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammadhossein Mohammadisiahroudi, Ramin Fakhimi, Tamás Terlaky
{"title":"Efficient Use of Quantum Linear System Algorithms in Inexact Infeasible IPMs for Linear Optimization","authors":"Mohammadhossein Mohammadisiahroudi, Ramin Fakhimi, Tamás Terlaky","doi":"10.1007/s10957-024-02452-z","DOIUrl":"https://doi.org/10.1007/s10957-024-02452-z","url":null,"abstract":"<p>Quantum computing has attracted significant interest in the optimization community because it potentially can solve classes of optimization problems faster than conventional supercomputers. Several researchers proposed quantum computing methods, especially quantum interior point methods (QIPMs), to solve convex conic optimization problems. Most of them have applied a quantum linear system algorithm at each iteration to compute a Newton step. However, using quantum linear solvers in QIPMs comes with many challenges, such as having ill-conditioned systems and the considerable error of quantum solvers. This paper investigates in detail the use of quantum linear solvers in QIPMs. Accordingly, an Inexact Infeasible Quantum Interior Point (II-QIPM) is developed to solve linear optimization problems. We also discuss how we can get an exact solution by iterative refinement (IR) without excessive time of quantum solvers. The proposed IR-II-QIPM shows exponential speed-up with respect to precision compared to previous II-QIPMs. Additionally, we present a quantum-inspired classical variant of the proposed IR-II-QIPM where QLSAs are replaced by conjugate gradient methods. This classic IR-II-IPM has some advantages compared to its quantum counterpart, as well as previous classic inexact infeasible IPMs. Finally, computational results with a QISKIT implementation of our QIPM using quantum simulators are presented and analyzed.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"35 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Risk Evaluation and Control of Distributed Multi-agent Systems","authors":"Aray Almen, Darinka Dentcheva","doi":"10.1007/s10957-024-02464-9","DOIUrl":"https://doi.org/10.1007/s10957-024-02464-9","url":null,"abstract":"<p>In this paper, we deal with risk evaluation and risk-averse optimization of complex distributed systems with general risk functionals. We postulate a novel set of axioms for the functionals evaluating the total risk of the system. We derive a dual representation for the systemic risk measures and propose new ways to construct families of systemic risk measures using either a collection of linear scalarizations or non-linear risk aggregation. The proposed framework facilitates risk-averse sequential decision-making by distributed methods. The new approach is compared theoretically and numerically to other systemic risk measurements from the existing literature. We formulate a two-stage decision problem for a distributed system using a systemic measure of risk. The structure accommodates distributed systems arising in energy networks, robotics, and other practical situations. A distributed decomposition method for solving the two-stage problem is proposed and applied to a problem arising in communication networks. We have used this problem to compare the methods of systemic risk evaluation. We show that the risk evaluation via linear scalarizations of outcomes leads to less conservative risk evaluation and results in a substantially better solution to the problem at hand than aggregating the risk of individual agents.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"14 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141526729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical Method for a Controlled Sweeping Process with Nonsmooth Sweeping Set","authors":"Chadi Nour, Vera Zeidan","doi":"10.1007/s10957-024-02470-x","DOIUrl":"https://doi.org/10.1007/s10957-024-02470-x","url":null,"abstract":"<p>The numerical method developed in Nour and Zeidan (IEEE Control Syst. Lett. 6:1190-1195, 2022) via the exponential penalization technique for optimal control problems involving sweeping processes with sweeping set <i>C</i> generated by <i>one</i> <i>smooth</i> function, is generalized in this paper to the case where <i>C</i> is <i>nonsmooth</i>. That is, <i>C</i> is the intersection of a <i>finite number</i> (greater than one) of sublevel sets of smooth functions. The change from one to greater than one generating smooth functions is quite challenging. Indeed, while in the latter case <i>C</i> could be reformulated as being generated by one function, however, this function is only <i>Lipschitz</i>, and hence, the method established for one generating smooth function is not applicable to this framework. Therefore, this general setting requires a new approach, which represents the novelty of this paper.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"40 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141526730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}