{"title":"Primal–Dual Stability in Local Optimality","authors":"Matúš Benko, R. Tyrrell Rockafellar","doi":"10.1007/s10957-024-02467-6","DOIUrl":null,"url":null,"abstract":"<p>Much is known about when a locally optimal solution depends in a single-valued Lipschitz continuous way on the problem’s parameters, including tilt perturbations. Much less is known, however, about when that solution and a uniquely determined multiplier vector associated with it exhibit that dependence as a primal–dual pair. In classical nonlinear programming, such advantageous behavior is tied to the combination of the standard strong second-order sufficient condition (SSOC) for local optimality and the linear independent gradient condition (LIGC) on the active constraint gradients. But although second-order sufficient conditons have successfully been extended far beyond nonlinear programming, insights into what should replace constraint gradient independence as the extended dual counterpart have been lacking. The exact answer is provided here for a wide range of optimization problems in finite dimensions. Behind it are advances in how coderivatives and strict graphical derivatives can be deployed. New results about strong metric regularity in solving variational inequalities and generalized equations are obtained from that as well.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"17 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02467-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Much is known about when a locally optimal solution depends in a single-valued Lipschitz continuous way on the problem’s parameters, including tilt perturbations. Much less is known, however, about when that solution and a uniquely determined multiplier vector associated with it exhibit that dependence as a primal–dual pair. In classical nonlinear programming, such advantageous behavior is tied to the combination of the standard strong second-order sufficient condition (SSOC) for local optimality and the linear independent gradient condition (LIGC) on the active constraint gradients. But although second-order sufficient conditons have successfully been extended far beyond nonlinear programming, insights into what should replace constraint gradient independence as the extended dual counterpart have been lacking. The exact answer is provided here for a wide range of optimization problems in finite dimensions. Behind it are advances in how coderivatives and strict graphical derivatives can be deployed. New results about strong metric regularity in solving variational inequalities and generalized equations are obtained from that as well.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.