{"title":"Primal Subgradient Methods with Predefined Step Sizes","authors":"Yurii Nesterov","doi":"10.1007/s10957-024-02456-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we suggest a new framework for analyzing primal subgradient methods for nonsmooth convex optimization problems. We show that the classical step-size rules, based on normalization of subgradient, or on knowledge of the optimal value of the objective function, need corrections when they are applied to optimization problems with constraints. Their proper modifications allow a significant acceleration of these schemes when the objective function has favorable properties (smoothness, strong convexity). We show how the new methods can be used for solving optimization problems with functional constraints with a possibility to approximate the optimal Lagrange multipliers. One of our primal-dual methods works also for unbounded feasible set.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02456-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we suggest a new framework for analyzing primal subgradient methods for nonsmooth convex optimization problems. We show that the classical step-size rules, based on normalization of subgradient, or on knowledge of the optimal value of the objective function, need corrections when they are applied to optimization problems with constraints. Their proper modifications allow a significant acceleration of these schemes when the objective function has favorable properties (smoothness, strong convexity). We show how the new methods can be used for solving optimization problems with functional constraints with a possibility to approximate the optimal Lagrange multipliers. One of our primal-dual methods works also for unbounded feasible set.
期刊介绍:
The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.