Journal of Soil and Water Conservation最新文献

筛选
英文 中文
Improving profitability and livelihood security of marginal farmers in Kandi area of Jammu 提高查谟坎迪地区边缘农民的盈利能力和生计安全
IF 3.9 4区 农林科学
Journal of Soil and Water Conservation Pub Date : 2023-01-01 DOI: 10.5958/2455-7145.2023.00014.0
M. Gupta, S. Kour, R. Bharat
{"title":"Improving profitability and livelihood security of marginal farmers in Kandi area of Jammu","authors":"M. Gupta, S. Kour, R. Bharat","doi":"10.5958/2455-7145.2023.00014.0","DOIUrl":"https://doi.org/10.5958/2455-7145.2023.00014.0","url":null,"abstract":"","PeriodicalId":50049,"journal":{"name":"Journal of Soil and Water Conservation","volume":"55 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79744744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plowing: Dust storms, Conservation Agriculture, and need for a “Soil Health Act” 耕作:沙尘暴、保护性农业和“土壤健康法”的必要性
IF 3.9 4区 农林科学
Journal of Soil and Water Conservation Pub Date : 2023-01-01 DOI: 10.2489/jswc.2023.0619A
Don Reicosky, David Brandt, Randall Reeder, Rattan Lal, David R. Montgomery
{"title":"Plowing: Dust storms, Conservation Agriculture, and need for a “Soil Health Act”","authors":"Don Reicosky, David Brandt, Randall Reeder, Rattan Lal, David R. Montgomery","doi":"10.2489/jswc.2023.0619A","DOIUrl":"https://doi.org/10.2489/jswc.2023.0619A","url":null,"abstract":"T he dust storm tragedy on I-55 in central Illinois on May 1, 2023, a reminder of the Dust Bowl era of the 1930s, necessitates urgent policy intervention to replace plow tillage with Conservation Agriculture (CA) involving no-tillage with crop biomass mulch, cover cropping, and complex crop rotations. System-based CA has co-benefits including control of soil erosion by wind (dust storm) and water, low risks of nonpoint source pollution including algal bloom, adaptation and mitigation of climate change, reduced incidence of drought-flood syndrome, sustained productivity, high farm income, and improved soil health. The current farm bill already contains a Clean Water Act, Clean Air Act, and Growing Climate Solutions Act that can all be complemented and more effective with a healthy soil. The forthcoming farm bill should have provision to reward farmers for ecosystem services at a nominal rate, e.g., US$50 ac–1 yr–1 (~US$123.46 ha–1 y–1), through a proposed “Soil Health Act” to further CA as a solution to climate change and other environmental issues. Restoring soil health through CA is a win-win option and a major contribution to mitigating future climate extremes and food security. Ninety years after the Dust Bowl we should not need reminding that agriculture’s job is to feed people without degrading the environment, not create chaotic catastrophic events due to poor utilization and resource management. Unfortunately, the recent I-55 dust storm catastrophe in central Illinois, United States, in May of 2023 did just that and caused the loss of 8 lives, hospitalization of 37 others, loss or damage to 72 vehicles, and triggered associated environmental degradation (figure 1). This disaster was caused by low April rainfall—roughly half of normal amounts—and high winds that blew across freshly tilled fields and lofted Don Reicosky is a retired soil scientist for USDA Agricultural Research Service, North Central Soil Conservation Research Laboratory, Morris, Minnesota, and adjunct professor in the Soil Science Department, University of Minnesota. Randall Reeder is a retired agricultural engineer for Ohio State University, serves as executive director of the Ohio No-till Council, and coordinates programs for the Conservation Tillage and Technology Conference in Ada, Ohio. Rattan Lal is a distinguished professor of soil science at Ohio State University, Columbus, Ohio. David R. Montgomery is a professor of earth and space sciences at the University of Washington, Seattle, Washington. David Brandt, known as the “Godfather of Soil Health,” was a conservation farmer from Carroll, Ohio, who was recognized internationally as a leader in no-till, cover crops, soil health, and regenerative agriculture. Received June 19, 2023. loosened topsoil into the air. The tragedy captures one of the more visible unintended consequences of frequent intensive tillage when farmers plow in the fall, and till again one or two times before spring planting. Less visible consequenc","PeriodicalId":50049,"journal":{"name":"Journal of Soil and Water Conservation","volume":"78 1","pages":"105A - 108A"},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85628543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of water quality of the Brahmaputra river in India for irrigation purpose 印度雅鲁藏布江灌溉用水水质评价
IF 3.9 4区 农林科学
Journal of Soil and Water Conservation Pub Date : 2023-01-01 DOI: 10.5958/2455-7145.2023.00006.1
P. Ray, Susmita Sarmah, K. K. Mourya, R. K. Jena, G. Sharma, S. Hota, R. Sharma, Bachaspati Das, S. Ray
{"title":"Assessment of water quality of the Brahmaputra river in India for irrigation purpose","authors":"P. Ray, Susmita Sarmah, K. K. Mourya, R. K. Jena, G. Sharma, S. Hota, R. Sharma, Bachaspati Das, S. Ray","doi":"10.5958/2455-7145.2023.00006.1","DOIUrl":"https://doi.org/10.5958/2455-7145.2023.00006.1","url":null,"abstract":"","PeriodicalId":50049,"journal":{"name":"Journal of Soil and Water Conservation","volume":"78 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89914788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathways to conservation persistence: Psychosocial drivers of durable grasslands following the Conservation Reserve Program 保护持久性的途径:保护计划后持久草原的社会心理驱动因素
4区 农林科学
Journal of Soil and Water Conservation Pub Date : 2023-01-01 DOI: 10.2489/jswc.2023.00215
J.C. Barnes, A.A. Dayer, A.R. Gramza, M. Sketch, A.M. Dwyer, R. Iovanna
{"title":"Pathways to conservation persistence: Psychosocial drivers of durable grasslands following the Conservation Reserve Program","authors":"J.C. Barnes, A.A. Dayer, A.R. Gramza, M. Sketch, A.M. Dwyer, R. Iovanna","doi":"10.2489/jswc.2023.00215","DOIUrl":"https://doi.org/10.2489/jswc.2023.00215","url":null,"abstract":"The Conservation Reserve Program (CRP), the largest private lands conservation program in the United States, has contributed substantially to the health of soil, water, and wildlife of the grasslands in the Great Plains of North America. However, the program’s limited-term contracts offer no guarantee that the vegetation and associated environmental benefits produced by the program will endure when landowners are no longer enrolled. Through a survey of landowners in the southern Great Plains with current or expired CRP contracts, this study explored the role of five pathways previously linked to behavioral persistence—cognitions, motivations, resources, social influences, and behavioral inertia—in grassland persistence after participation in CRP ends. Among landowners with current CRP contracts, intentions to persist with grassland in the future were correlated with positive program experiences, the perceived ease and desirability of keeping their CRP field in grass, and intrinsic motivations to improve the beauty of their field or its value for wildlife or livestock. Reported grassland persistence among landowners with expired CRP contracts was additionally correlated with motivations to improve their field’s soil and water conditions and the availability of natural and material resources. Across both landowner groups, grassland persistence was negatively associated with the importance of financial motivations in landowners’ decision-making and positively associated with normative influences related to how others manage former CRP land in the area. These insights into the drivers of postprogram landowner behavior provide support for the role of cognitive, motivational, social, resource, and behavioral pathways in the durability of grasslands established through CRP and open multiple programmatic and policy opportunities for promoting enduring benefits for the land, people, and wildlife of the Great Plains.","PeriodicalId":50049,"journal":{"name":"Journal of Soil and Water Conservation","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135711577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmental justice, climate change, and agriculture 环境正义、气候变化和农业
IF 3.9 4区 农林科学
Journal of Soil and Water Conservation Pub Date : 2023-01-01 DOI: 10.2489/jswc.2023.0912A
A. Manale
{"title":"Environmental justice, climate change, and agriculture","authors":"A. Manale","doi":"10.2489/jswc.2023.0912A","DOIUrl":"https://doi.org/10.2489/jswc.2023.0912A","url":null,"abstract":"Climate change will be the most consequential challenge to the global society and especially to agriculture in the coming decades. However, what does climate change have to do with environmental justice (EJ)? Is not EJ supposed to be about protecting disadvantaged communities from toxic chemicals?","PeriodicalId":50049,"journal":{"name":"Journal of Soil and Water Conservation","volume":"86 1","pages":"45A - 49A"},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73393897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analysis of soil water potential characteristics of wheat croplands and apple orchards in an agroforestry ecosystem based on the van Genuchten model 基于van Genuchten模型的农林复合生态系统麦田和苹果园土壤水势特征分析
IF 3.9 4区 农林科学
Journal of Soil and Water Conservation Pub Date : 2023-01-01 DOI: 10.2489/jswc.2023.00038
L. Zhang, Y. Wang
{"title":"Analysis of soil water potential characteristics of wheat croplands and apple orchards in an agroforestry ecosystem based on the van Genuchten model","authors":"L. Zhang, Y. Wang","doi":"10.2489/jswc.2023.00038","DOIUrl":"https://doi.org/10.2489/jswc.2023.00038","url":null,"abstract":"Due to intense droughts and water shortages, soil water deficit limits agricultural production in arid and semiarid areas, such as China’s Loess Plateau region. Yet the effects of different cover crops on soil water in these areas have received insufficient attention. This study was conducted in the Weibei rainfed highland to investigate soil water potential dynamics in an agroforestry ecosystem comprising winter wheat (Triticum aestivum L.) and apple (Malus domestica) trees over the apple growth period (March to September of 2020). Soil water characteristic curves (SWCCs) of cropland topsoil (0 to 40 cm), orchard topsoil (0 to 40 cm), dark loessial subsoil (40 to 80 cm), and loess parent material (80 to 150 cm) were determined using the centrifuge method and water vapor equilibrium method. The van Genuchten model was used to fit SWCCs and then convert volumetric soil water content monitored in field plots to soil water potential. A quantitative analysis was conducted to evaluate soil water stress in wheat croplands and apple orchards. The model performed well in fitting SWCCs for all tested soils, yielding a robust accuracy (R2 > 0.96). Compared to apple trees, wheat was more threatened by drought. From mid-March to early July, the 0 to 100 cm soil layers of croplands all exhibited high water stress with matric suction pF > 3.98, and unavailable water occurred in the 0 to 20 cm and 0 to 80 cm soil layers in late March to late April and mid-May to mid-July, respectively. Drought threat in apple orchards increased with an increase in tree age. In young orchards (<10 y), high water stress was found only in surface soil layers (0 to 20 cm) in mid-March to late April and late May to early July, which spread to a depth of 70 cm in early June to early July. In mature orchards (10 to 20 y), high water stress was similarly observed in the surface soil layers in mid-March to early May and late May to early July, which extended to the 80 cm depth in late May to early July. In old orchards (>20 y), high water stress initially emerged in the surface soil layers in early April to mid-April and then reached the 70 cm depth in late May to mid-July, whereas unavailable water occurred in the 0 to 60 cm soil layers in mid-June to mid-July. The results indicated that soil water stress zones with low water potential were formed intermittently at different soil depths of apple orchards depending on tree age and growth stage. However, compared to wheat croplands, apple orchards were less influenced by drought stress, so that converting croplands to orchards could alleviate drought threats in the Weibei area.","PeriodicalId":50049,"journal":{"name":"Journal of Soil and Water Conservation","volume":"42 1","pages":"33 - 43"},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86549907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agriculture as part of the solution to climate change: Incentivizing the adoption of no-till and cover crops 农业作为气候变化解决方案的一部分:鼓励采用免耕和覆盖作物
IF 3.9 4区 农林科学
Journal of Soil and Water Conservation Pub Date : 2023-01-01 DOI: 10.2489/jswc.2023.0620a
D. Kissel, J. Gaskin, Miguel L. Cabrera, Bert R. Bock, Rattan Lal
{"title":"Agriculture as part of the solution to climate change: Incentivizing the adoption of no-till and cover crops","authors":"D. Kissel, J. Gaskin, Miguel L. Cabrera, Bert R. Bock, Rattan Lal","doi":"10.2489/jswc.2023.0620a","DOIUrl":"https://doi.org/10.2489/jswc.2023.0620a","url":null,"abstract":"","PeriodicalId":50049,"journal":{"name":"Journal of Soil and Water Conservation","volume":"5 1","pages":"103A - 104A"},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87312060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Practical guidance for deciding whether to account for soil variability when managing for land health, agricultural production, and climate resilience 在管理土地健康、农业生产和气候适应能力时决定是否考虑土壤变异的实用指南
4区 农林科学
Journal of Soil and Water Conservation Pub Date : 2023-01-01 DOI: 10.2489/jswc.2023.0706a
Jeffrey E. Herrick, Jonathan M. Maynard, Brandon T. Bestelmeyer, Chelsea J. Carey, Shawn W. Salley, Keith Shepherd, Zachary P. Stewart, Skye A. Wills, Feras M. Ziadat
{"title":"Practical guidance for deciding whether to account for soil variability when managing for land health, agricultural production, and climate resilience","authors":"Jeffrey E. Herrick, Jonathan M. Maynard, Brandon T. Bestelmeyer, Chelsea J. Carey, Shawn W. Salley, Keith Shepherd, Zachary P. Stewart, Skye A. Wills, Feras M. Ziadat","doi":"10.2489/jswc.2023.0706a","DOIUrl":"https://doi.org/10.2489/jswc.2023.0706a","url":null,"abstract":"","PeriodicalId":50049,"journal":{"name":"Journal of Soil and Water Conservation","volume":"141 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135712565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Individual- and county-level factors associated with farmers’ use of 4R Plus nutrient management practices 与农民使用4R +养分管理方法相关的个人和县级因素
IF 3.9 4区 农林科学
Journal of Soil and Water Conservation Pub Date : 2023-01-01 DOI: 10.2489/jswc.2023.00002
J. G. Arbuckle, Lisa A. Schulte, S. Upadhaya
{"title":"Individual- and county-level factors associated with farmers’ use of 4R Plus nutrient management practices","authors":"J. G. Arbuckle, Lisa A. Schulte, S. Upadhaya","doi":"10.2489/jswc.2023.00002","DOIUrl":"https://doi.org/10.2489/jswc.2023.00002","url":null,"abstract":"The 4R Plus approach to agricultural nutrient management—ensuring that the “right source” of nutrients is used at the “right rate,” “right time,” in the “right place,” and combined with appropriate in-field and edge-of-field practices—is posited to lead to win-win outcomes for farmers and the environment. While industry and conservation organizations are promoting the approach, farmers have not yet adopted 4R Plus practices at rates sufficient to meet the state’s nutrient reduction goals. We employed multilevel modeling with survey data from 6,006 Iowa farmers to examine the complex relationships among individual- and county-level social, economic, and ecological factors associated with 4R Plus practice adoption. We found that adoption was associated with clusters of factors at both the individual and county levels. At the individual level, the variable crop area was positively associated with predicting use of all 4R Plus practices except Right Rate. Farmers’ perceived lack of agronomic capacity to address nutrient losses was negatively associated with use of all 4R Plus practices but the Right Source. At the county level, farmers in counties with a higher percentage of rented land were less likely to have adopted Right Time, Right Source, and Edge-of-Field practices. Those farming in counties with a greater average slope were more likely to adopt Plus practices, such as cover crops and terraces. County-level crop insurance coverage rate was negatively associated with In-Field and Edge-of-Field Plus practices. Overall, this study provides quantitative support for qualitative studies that call for conservation programs to simultaneously address factors operating at multiple scales to improve outcomes. Programs that combine local, direct assistance to farmers with broader efforts to remove structural barriers may be more likely to be effective at facilitating conservation adoption than those operating at one scale alone. Specific to 4R Plus programming, efforts that simultaneously help farmers address farm-level capacity barriers and improve policies and programs (e.g., crop insurance) to ensure encouragement rather than hindrance of practice adoption would likely lead to better environmental outcomes.","PeriodicalId":50049,"journal":{"name":"Journal of Soil and Water Conservation","volume":"47 1","pages":"412 - 429"},"PeriodicalIF":3.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83251042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A framework to estimate climate mitigation potential for US cropland using publicly available data 一个利用公开数据估计美国农田气候减缓潜力的框架
IF 3.9 4区 农林科学
Journal of Soil and Water Conservation Pub Date : 2022-12-14 DOI: 10.2489/jswc.2023.00132
J. Moore, D. Manter, M. Bowman, M. Hunter, E. Bruner, S. McClelland
{"title":"A framework to estimate climate mitigation potential for US cropland using publicly available data","authors":"J. Moore, D. Manter, M. Bowman, M. Hunter, E. Bruner, S. McClelland","doi":"10.2489/jswc.2023.00132","DOIUrl":"https://doi.org/10.2489/jswc.2023.00132","url":null,"abstract":"The US agricultural sector is proposed as one opportunity to contribute to greenhouse gas (GHG) emissions reductions—reductions that are needed to limit atmospheric warming to be more in line with the US Nationally Determined Contribution to the Paris Agreement. Improved management of agricultural soils can both mitigate GHG emissions and increase carbon (C) sequestration, but disagreement exists regarding what levels of adoption are possible and to what extent they may mitigate net GHG emissions. In this paper, we provide a framework for setting reasonable, short-term conservation practice adoption targets and quantifying the associated net emissions reductions. Our framework was constructed using USDA-based publicly available inventory data and mitigation potentials from the COMET-Planner tool scaled to nine farm resource regions. The framework includes 2017 levels of conservation practice adoption and two 10-year growth scenarios: business-as-usual (BAU) and accelerated adoption rates. We evaluated six cropland management practices and practices associated with Conservation Reserve Program (CRP) establishment. Based on existing (2017) census data, we estimated that 134.2 million tonnes (Mt) carbon dioxide equivalents (CO2e) per year have been or continue to be reduced through the adoption of conservation management practices on a cumulative total of 133.5 million hectares (Mha) of cropland. Under the BAU scenario, we estimated an additional 6.2 Mha y−1 of adoption could result in a reduction potential of 48.7 Mt CO2e y−1. Under the accelerated scenario, we estimated an additional 13.1 Mha y−1 of adoption could result in a reduction potential of 118.5 Mt of CO2e y−1 over the next 10 years. This framework highlights three key outcomes: (1) agriculture has had a substantial impact on GHG mitigation through existing/historical adoption of six cropland management practices and conversion of lands to the CRP; (2) these shifts in adoption provide an important baseline to make future projections of changes in practice adoption given regional trends and the resulting GHG mitigation potentials; and (3) disaggregating national estimates to the farm resource region level can help to inform and prioritize programs and policies consistent with existing climate goals. Estimates reported here reflect the current state of national modeling efforts and agricultural inventory sources. As new data such as the pending 2022 Ag Census report and model enhancements are made, the framework we outline here can be used to revise and update the estimates to improve accuracy and applicability.","PeriodicalId":50049,"journal":{"name":"Journal of Soil and Water Conservation","volume":"28 1","pages":"193 - 206"},"PeriodicalIF":3.9,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79270016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信