{"title":"Mission Profile Analysis of Point-to-Point Rocket Cargo Transportation System Using Trajectory Optimization","authors":"Sang-Don Lee, Ki-Wook Jung, Chang-Hun Lee","doi":"10.2514/1.a35766","DOIUrl":"https://doi.org/10.2514/1.a35766","url":null,"abstract":"This paper proposes new concepts for the point-to-point rocket cargo transportation system (RCTS). The RCTS is a transportation system that can deliver cargo anywhere on Earth in an hour using reusable launch vehicle technologies. As a fundamental study of global transportation on Earth, we especially address the mission profiles for short-range transportation within hundreds of kilometers using small rocket engines, which are intended for logistics transportation within neighboring countries or domestic transportation in a country. Two mission profiles of the RCTS are introduced, and the flight phases of each concept are explained in detail. The trajectory optimization problem of the RCTS is formulated based on the mission profiles, incorporating the flight constraints, boundary conditions, and an objective function that aims to maximize the payload ratio. The explicit-guidance is employed during the landing burn phase to enhance the convergence of the optimization problem by expanding the feasible region. The coevolutionary augmented Lagrangian method, one of the evolutionary algorithms, is utilized to obtain the solution for the trajectory optimization problem. The optimal trajectory and state variables are presented through numerical simulations. Additionally, parametric studies are performed to determine the payload mass trend of the RCTS. The trajectory optimization results are summarized to provide an analysis and comparison of the proposed mission profiles.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135816451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical Optimal Solution for the Reachable Domain of Low-Thrust Spacecraft","authors":"Zhaowei Wang, Fanghua Jiang","doi":"10.2514/1.a35788","DOIUrl":"https://doi.org/10.2514/1.a35788","url":null,"abstract":"Low-thrust electric propulsion system has drawn increasing attention from researchers because of its high propellant efficiency. The reachable domain of low-thrust spacecraft can provide a geometric insight for space mission planning. In this paper, analytical solutions of the envelope of reachable domain are obtained by employing the Pontryagin’s maximum principle in the well-known linearized model of relative motion, the Tschauner–Hempel equations. Specifically, this study focuses on two contributions. First, an analytical solution of the envelope of reachable domain is obtained, and the associated optimal control profile is derived. Second, an ellipsoid approximation of the reachable domain is proposed to represent the envelope directly based on the analytical solution. Numerical simulations are conducted to demonstrate the accuracy of the proposed solutions. The results show that the reachable domain obtained analytically coincides well with that solved by the numerical indirect method based on the two-body model with low thrust.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135816426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mesh-Based Two-Step Convex Optimization for Spacecraft Landing Trajectory Planning on Irregular Asteroid","authors":"Zichen Zhao, Haibin Shang, Chengliang Liu, Shuchen Xiao","doi":"10.2514/1.a35715","DOIUrl":"https://doi.org/10.2514/1.a35715","url":null,"abstract":"The problem investigated in this paper is how to rapidly optimize a landing trajectory on an arbitrarily shaped asteroid, subject to practical constraints and a gravitational model suitable for irregular asteroids. The fundamental idea is to convert the nonlinearity involved in the gravitational field into an equivalent convex version and further generate the optimal trajectory using the two-step convex optimization technique to achieve efficient and robust computation. For a given mission area, the positional space is discretized as an exactly sufficient number of small tetrahedron meshes, within which the real gravitations are interpolated as the linear gravitational representation with nonconvex mesh tracking constraints. A solution space relaxation–penalization technique is proposed to convexify the mesh tracking constraints and keep the feasibility of the resulting convex optimization problem. A series of optimal active meshes are generated by solving this problem and transcribed as corresponding convex active meshing constraints, and further imposing them on the landing trajectory to construct the final convex optimization problem equaling to the original problem. The strength and correctness of this method are demonstrated from both perspectives of theoretical analyses and numerical simulations for landing on 4769 Castalia asteroid, with the comparisons of the state-of-the-art convex-optimization-based methods.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"119 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135816607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy Deposition on Analogous Vehicle Panel: Thermal–Structural Response","authors":"Bianca R. Capra, Lily G. Attwood","doi":"10.2514/1.a35629","DOIUrl":"https://doi.org/10.2514/1.a35629","url":null,"abstract":"A proof-of-concept experimental methodology and results are presented for the simulation of direct thermal energy deposition on a hypersonic vehicle panel analog. The methodology involved uniformly heating ceramic plates via joule heating with localized regions of thermal nonuniformity achieved via plate profiling. A parametric study was first performed to quantify the key parameters governing the level of simulated energy deposition achieved. The plate material, profile size, and amperage used to energize the plate were varied in this study, with a total of 108 cases analyzed. The overall plate thermal response, the [Formula: see text] achieved over the profile section, and the plate deflection were examined in detail. Configurations resulting in high overall plate temperatures with large [Formula: see text] in the profile section and appreciable deflection were then selected for benchtop testing. Wall temperatures in the range of 686–1144 K were achieved experimentally with peak [Formula: see text] T in the range of 46–427 K. One plate was visually observed to deflect on the order of 3 mm. The results from this demonstrate the suitability of the presented methodology for generating nonuniform, yet controlled temperature profiles on analogous vehicle panels for future shock-tunnel testing.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"63 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135690233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anastasios Kontaxoglou, Seiji Tsutsumi, Samir Khan, Shinichi Nakasuka
{"title":"Multifidelity Framework for Small Satellite Thermal Analysis","authors":"Anastasios Kontaxoglou, Seiji Tsutsumi, Samir Khan, Shinichi Nakasuka","doi":"10.2514/1.a35666","DOIUrl":"https://doi.org/10.2514/1.a35666","url":null,"abstract":"Anomalies, unexpected events, and model inaccuracies have detrimental effects on satellite operations. High-fidelity models are required, but these models quickly become large and expensive. Cheap or low-fidelity models speed up computation but lack accuracy. To compromise these requirements, this study proposes a multifidelity framework based on cokriging. The proposed multifidelity framework is compared against three other standard methods often used in satellite simulations: a standalone gated recurrent unit, Gaussian process regression, and the autoregressive integrated moving average with explanatory variables model. The robustness of high-fidelity data point placement is also examined. Moreover, the real-time aspect of the simulation is considered by applying the sliding window technique. This multifidelity framework is demonstrated using temperature data obtained from thermal vacuum testing of Small Demonstration Satellite 4: a 50-kg-class satellite. The multifidelity framework provided higher accuracy and robustness than the other methods, however, having a higher computational cost as compared to a purely low-fidelity model. Up to 92% reduction of the error was achieved by the proposed framework.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135734392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trajectory of a Spacecraft When It Passes by a Gravitational Body During Interstellar Travel","authors":"Larry M. Silverberg, J. Eischen","doi":"10.2514/1.a35684","DOIUrl":"https://doi.org/10.2514/1.a35684","url":null,"abstract":"Interstellar space missions will require spacecraft that travel at relativistic speeds. Furthermore, their trajectories will be influenced by gravitational sources. Accordingly, this paper applies to interstellar missions a recently developed formulation of relativistic mechanics that predicts a spacecraft’s trajectory when it passes by a gravitational source at a relativistic speed. The formulation, called spacetime impetus, is unique in that it employs a relativistic universal law of gravitation that does not explicitly require general relativity while producing precisely the same results. Based on these developments, an analyst can now update nonrelativistic mission planning codes to give them general relativistic capabilities. It requires augmenting the code with relativistic velocities and relativistic accelerations, the replacement of the universal law of gravitation with a relativistic universal law of gravitation, and setting up Lorentz transformations between frames.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43708780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"STAJe−: A Supersonic Flight Program STAJe− 1 Payload Design and System Study","authors":"Jens Kunze, Sampada Vijay Shelar, Allan Paull","doi":"10.2514/1.a35544","DOIUrl":"https://doi.org/10.2514/1.a35544","url":null,"abstract":"The [Formula: see text] flight program is the latest implementation of a university-based supersonic and hypersonic flight-test program. In the first flight, which is the subject of this study, the focus is on evaluating the suitability of commercial off-the-shelf electronic hardware, additively manufactured internal payload structures, and a long-range communications technique in the challenging environment presented by flight at high supersonic Mach numbers. These items can significantly reduce the cost of a flight experiment, and thus lower the threshold for flight experimentation. The scientific objectives of this flight are to collect pressure and temperature data on the whole trajectory to compare to numerical models, to optically measure the temperature of composite fins mounted on the payload, and to eject the flight module from the rocket assembly and track its location for subsequent recovery. Design calculations for the tracking system are presented alongside experimental results from ground tests demonstrating the suitability of the system. Furthermore, a one-dimensional calculation of the external wall temperatures over the trajectory is presented, which shows that internal systems are sufficiently protected from the harsh environment. Although the materials are shown to be appropriate for the flight, a layer of cork will be added to parts of the payload to further reduce the chance of structural failure. In addition, it is shown that a pneumatic ejection system is suited to overcoming the drag forces on the front of the rocket to initiate separation.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44826487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Axial-Injection End-Burning Hybrid Rocket Motor Sensitivity Study","authors":"Matthew A. Hitt","doi":"10.2514/1.a35534","DOIUrl":"https://doi.org/10.2514/1.a35534","url":null,"abstract":"Covers advancements in spacecraft and tactical and strategic missile systems, including subsystem design and application, mission design and analysis, materials and structures, developments in space sciences, space processing and manufacturing, space operations, and applications of space technologies to other fields.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135944519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: High Mach Number Operation of Accelerator Scramjet Engine","authors":"Damian Curran, Vincent Wheatley, Michael Smart","doi":"10.2514/1.a35511.c1","DOIUrl":"https://doi.org/10.2514/1.a35511.c1","url":null,"abstract":"Covers advancements in spacecraft and tactical and strategic missile systems, including subsystem design and application, mission design and analysis, materials and structures, developments in space sciences, space processing and manufacturing, space operations, and applications of space technologies to other fields.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"18 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136173175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}