模拟汽车面板上的能量沉积:热结构响应

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Bianca R. Capra, Lily G. Attwood
{"title":"模拟汽车面板上的能量沉积:热结构响应","authors":"Bianca R. Capra, Lily G. Attwood","doi":"10.2514/1.a35629","DOIUrl":null,"url":null,"abstract":"A proof-of-concept experimental methodology and results are presented for the simulation of direct thermal energy deposition on a hypersonic vehicle panel analog. The methodology involved uniformly heating ceramic plates via joule heating with localized regions of thermal nonuniformity achieved via plate profiling. A parametric study was first performed to quantify the key parameters governing the level of simulated energy deposition achieved. The plate material, profile size, and amperage used to energize the plate were varied in this study, with a total of 108 cases analyzed. The overall plate thermal response, the [Formula: see text] achieved over the profile section, and the plate deflection were examined in detail. Configurations resulting in high overall plate temperatures with large [Formula: see text] in the profile section and appreciable deflection were then selected for benchtop testing. Wall temperatures in the range of 686–1144 K were achieved experimentally with peak [Formula: see text] T in the range of 46–427 K. One plate was visually observed to deflect on the order of 3 mm. The results from this demonstrate the suitability of the presented methodology for generating nonuniform, yet controlled temperature profiles on analogous vehicle panels for future shock-tunnel testing.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"63 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Deposition on Analogous Vehicle Panel: Thermal–Structural Response\",\"authors\":\"Bianca R. Capra, Lily G. Attwood\",\"doi\":\"10.2514/1.a35629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A proof-of-concept experimental methodology and results are presented for the simulation of direct thermal energy deposition on a hypersonic vehicle panel analog. The methodology involved uniformly heating ceramic plates via joule heating with localized regions of thermal nonuniformity achieved via plate profiling. A parametric study was first performed to quantify the key parameters governing the level of simulated energy deposition achieved. The plate material, profile size, and amperage used to energize the plate were varied in this study, with a total of 108 cases analyzed. The overall plate thermal response, the [Formula: see text] achieved over the profile section, and the plate deflection were examined in detail. Configurations resulting in high overall plate temperatures with large [Formula: see text] in the profile section and appreciable deflection were then selected for benchtop testing. Wall temperatures in the range of 686–1144 K were achieved experimentally with peak [Formula: see text] T in the range of 46–427 K. One plate was visually observed to deflect on the order of 3 mm. The results from this demonstrate the suitability of the presented methodology for generating nonuniform, yet controlled temperature profiles on analogous vehicle panels for future shock-tunnel testing.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35629\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.a35629","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于高超声速飞行器面板上直接热能沉积模拟的概念验证实验方法和结果。该方法涉及通过焦耳加热均匀加热陶瓷板,并通过板形实现局部热不均匀性。首先进行了参数化研究,以量化控制模拟能量沉积水平的关键参数。在本研究中,钢板材料、外形尺寸和用于激励钢板的安培数是不同的,总共分析了108个案例。对板的整体热响应、[公式:见文本]在型材截面上的实现以及板的挠度进行了详细的检查。然后选择导致整体板温高的配置,在型材部分有较大的[公式:见文本]和明显的挠度,进行台式测试。实验得到了686 - 1144k的壁温,峰值T在46 - 427k范围内。在视觉上观察到一块板偏转约3mm。这一结果证明了所提出的方法对于在未来的冲击隧道试验中模拟车辆面板上生成不均匀但可控的温度曲线的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Deposition on Analogous Vehicle Panel: Thermal–Structural Response
A proof-of-concept experimental methodology and results are presented for the simulation of direct thermal energy deposition on a hypersonic vehicle panel analog. The methodology involved uniformly heating ceramic plates via joule heating with localized regions of thermal nonuniformity achieved via plate profiling. A parametric study was first performed to quantify the key parameters governing the level of simulated energy deposition achieved. The plate material, profile size, and amperage used to energize the plate were varied in this study, with a total of 108 cases analyzed. The overall plate thermal response, the [Formula: see text] achieved over the profile section, and the plate deflection were examined in detail. Configurations resulting in high overall plate temperatures with large [Formula: see text] in the profile section and appreciable deflection were then selected for benchtop testing. Wall temperatures in the range of 686–1144 K were achieved experimentally with peak [Formula: see text] T in the range of 46–427 K. One plate was visually observed to deflect on the order of 3 mm. The results from this demonstrate the suitability of the presented methodology for generating nonuniform, yet controlled temperature profiles on analogous vehicle panels for future shock-tunnel testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spacecraft and Rockets
Journal of Spacecraft and Rockets 工程技术-工程:宇航
CiteScore
3.60
自引率
18.80%
发文量
185
审稿时长
4.5 months
期刊介绍: This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信