Anastasios Kontaxoglou, Seiji Tsutsumi, Samir Khan, Shinichi Nakasuka
{"title":"Multifidelity Framework for Small Satellite Thermal Analysis","authors":"Anastasios Kontaxoglou, Seiji Tsutsumi, Samir Khan, Shinichi Nakasuka","doi":"10.2514/1.a35666","DOIUrl":null,"url":null,"abstract":"Anomalies, unexpected events, and model inaccuracies have detrimental effects on satellite operations. High-fidelity models are required, but these models quickly become large and expensive. Cheap or low-fidelity models speed up computation but lack accuracy. To compromise these requirements, this study proposes a multifidelity framework based on cokriging. The proposed multifidelity framework is compared against three other standard methods often used in satellite simulations: a standalone gated recurrent unit, Gaussian process regression, and the autoregressive integrated moving average with explanatory variables model. The robustness of high-fidelity data point placement is also examined. Moreover, the real-time aspect of the simulation is considered by applying the sliding window technique. This multifidelity framework is demonstrated using temperature data obtained from thermal vacuum testing of Small Demonstration Satellite 4: a 50-kg-class satellite. The multifidelity framework provided higher accuracy and robustness than the other methods, however, having a higher computational cost as compared to a purely low-fidelity model. Up to 92% reduction of the error was achieved by the proposed framework.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"55 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.a35666","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Anomalies, unexpected events, and model inaccuracies have detrimental effects on satellite operations. High-fidelity models are required, but these models quickly become large and expensive. Cheap or low-fidelity models speed up computation but lack accuracy. To compromise these requirements, this study proposes a multifidelity framework based on cokriging. The proposed multifidelity framework is compared against three other standard methods often used in satellite simulations: a standalone gated recurrent unit, Gaussian process regression, and the autoregressive integrated moving average with explanatory variables model. The robustness of high-fidelity data point placement is also examined. Moreover, the real-time aspect of the simulation is considered by applying the sliding window technique. This multifidelity framework is demonstrated using temperature data obtained from thermal vacuum testing of Small Demonstration Satellite 4: a 50-kg-class satellite. The multifidelity framework provided higher accuracy and robustness than the other methods, however, having a higher computational cost as compared to a purely low-fidelity model. Up to 92% reduction of the error was achieved by the proposed framework.
期刊介绍:
This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.