Machine Learning最新文献

筛选
英文 中文
Reversible jump attack to textual classifiers with modification reduction 针对文本分类器的可逆跳转攻击与修改减少
IF 7.5 3区 计算机科学
Machine Learning Pub Date : 2024-04-22 DOI: 10.1007/s10994-024-06539-6
Mingze Ni, Zhensu Sun, Wei Liu
{"title":"Reversible jump attack to textual classifiers with modification reduction","authors":"Mingze Ni, Zhensu Sun, Wei Liu","doi":"10.1007/s10994-024-06539-6","DOIUrl":"https://doi.org/10.1007/s10994-024-06539-6","url":null,"abstract":"<p>Recent studies on adversarial examples expose vulnerabilities of natural language processing models. Existing techniques for generating adversarial examples are typically driven by deterministic hierarchical rules that are agnostic to the optimal adversarial examples, a strategy that often results in adversarial samples with a suboptimal balance between magnitudes of changes and attack successes. To this end, in this research we propose two algorithms, Reversible Jump Attack (RJA) and Metropolis–Hasting Modification Reduction (MMR), to generate highly effective adversarial examples and to improve the imperceptibility of the examples, respectively. RJA utilizes a novel randomization mechanism to enlarge the search space and efficiently adapts to a number of perturbed words for adversarial examples. With these generated adversarial examples, MMR applies the Metropolis–Hasting sampler to enhance the imperceptibility of adversarial examples. Extensive experiments demonstrate that RJA-MMR outperforms current state-of-the-art methods in attack performance, imperceptibility, fluency and grammar correctness.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coresets for kernel clustering 内核聚类的核集
IF 7.5 3区 计算机科学
Machine Learning Pub Date : 2024-04-22 DOI: 10.1007/s10994-024-06540-z
Shaofeng H. -C. Jiang, Robert Krauthgamer, Jianing Lou, Yubo Zhang
{"title":"Coresets for kernel clustering","authors":"Shaofeng H. -C. Jiang, Robert Krauthgamer, Jianing Lou, Yubo Zhang","doi":"10.1007/s10994-024-06540-z","DOIUrl":"https://doi.org/10.1007/s10994-024-06540-z","url":null,"abstract":"<p>We devise coresets for kernel <span>(k)</span>-<span>Means</span> with a general kernel, and use them to obtain new, more efficient, algorithms. Kernel <span>(k)</span>-<span>Means</span> has superior clustering capability compared to classical <span>(k)</span>-<span>Means</span>, particularly when clusters are non-linearly separable, but it also introduces significant computational challenges. We address this computational issue by constructing a coreset, which is a reduced dataset that accurately preserves the clustering costs. Our main result is a coreset for kernel <span>(k)</span>-<span>Means</span> that works for a general kernel and has size <span>({{,textrm{poly},}}(kepsilon ^{-1}))</span>. Our new coreset both generalizes and greatly improves all previous results; moreover, it can be constructed in time near-linear in <i>n</i>. This result immediately implies new algorithms for kernel <span>(k)</span>-<span>Means</span>, such as a <span>((1+epsilon ))</span>-approximation in time near-linear in <i>n</i>, and a streaming algorithm using space and update time <span>({{,textrm{poly},}}(k epsilon ^{-1} log n))</span>. We validate our coreset on various datasets with different kernels. Our coreset performs consistently well, achieving small errors while using very few points. We show that our coresets can speed up kernel <span>(textsc {k-Means++})</span> (the kernelized version of the widely used <span>(textsc {k-Means++})</span> algorithm), and we further use this faster kernel <span>(textsc {k-Means++})</span> for spectral clustering. In both applications, we achieve significant speedup and a better asymptotic growth while the error is comparable to baselines that do not use coresets.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From MNIST to ImageNet and back: benchmarking continual curriculum learning 从 MNIST 到 ImageNet 再到 ImageNet:持续课程学习的基准测试
IF 7.5 3区 计算机科学
Machine Learning Pub Date : 2024-04-22 DOI: 10.1007/s10994-024-06524-z
Kamil Faber, Dominik Zurek, Marcin Pietron, Nathalie Japkowicz, Antonio Vergari, Roberto Corizzo
{"title":"From MNIST to ImageNet and back: benchmarking continual curriculum learning","authors":"Kamil Faber, Dominik Zurek, Marcin Pietron, Nathalie Japkowicz, Antonio Vergari, Roberto Corizzo","doi":"10.1007/s10994-024-06524-z","DOIUrl":"https://doi.org/10.1007/s10994-024-06524-z","url":null,"abstract":"<p>Continual learning (CL) is one of the most promising trends in recent machine learning research. Its goal is to go beyond classical assumptions in machine learning and develop models and learning strategies that present high robustness in dynamic environments. This goal is realized by designing strategies that simultaneously foster the incorporation of new knowledge while avoiding forgetting past knowledge. The landscape of CL research is fragmented into several learning evaluation protocols, comprising different learning tasks, datasets, and evaluation metrics. Additionally, the benchmarks adopted so far are still distant from the complexity of real-world scenarios, and are usually tailored to highlight capabilities specific to certain strategies. In such a landscape, it is hard to clearly and objectively assess models and strategies. In this work, we fill this gap for CL on image data by introducing two novel CL benchmarks that involve multiple heterogeneous tasks from six image datasets, with varying levels of complexity and quality. Our aim is to fairly evaluate current state-of-the-art CL strategies on a common ground that is closer to complex real-world scenarios. We additionally structure our benchmarks so that tasks are presented in increasing and decreasing order of complexity—according to a curriculum—in order to evaluate if current CL models are able to exploit structure across tasks. We devote particular emphasis to providing the CL community with a rigorous and reproducible evaluation protocol for measuring the ability of a model to generalize and not to forget while learning. Furthermore, we provide an extensive experimental evaluation showing that popular CL strategies, when challenged with our proposed benchmarks, yield sub-par performance, high levels of forgetting, and present a limited ability to effectively leverage curriculum task ordering. We believe that these results highlight the need for rigorous comparisons in future CL works as well as pave the way to design new CL strategies that are able to deal with more complex scenarios.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A survey on interpretable reinforcement learning 可解释强化学习调查
IF 7.5 3区 计算机科学
Machine Learning Pub Date : 2024-04-19 DOI: 10.1007/s10994-024-06543-w
Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, Wulong Liu
{"title":"A survey on interpretable reinforcement learning","authors":"Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, Wulong Liu","doi":"10.1007/s10994-024-06543-w","DOIUrl":"https://doi.org/10.1007/s10994-024-06543-w","url":null,"abstract":"<p>Although deep reinforcement learning has become a promising machine learning approach for sequential decision-making problems, it is still not mature enough for high-stake domains such as autonomous driving or medical applications. In such contexts, a learned policy needs for instance to be interpretable, so that it can be inspected before any deployment (e.g., for safety and verifiability reasons). This survey provides an overview of various approaches to achieve higher interpretability in reinforcement learning (RL). To that aim, we distinguish interpretability (as an intrinsic property of a model) and explainability (as a post-hoc operation) and discuss them in the context of RL with an emphasis on the former notion. In particular, we argue that interpretable RL may embrace different facets: interpretable inputs, interpretable (transition/reward) models, and interpretable decision-making. Based on this scheme, we summarize and analyze recent work related to interpretable RL with an emphasis on papers published in the past 10 years. We also discuss briefly some related research areas and point to some potential promising research directions, notably related to the recent development of foundation models (e.g., large language models, RL from human feedback).</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PolieDRO: a novel classification and regression framework with non-parametric data-driven regularization PolieDRO:非参数数据驱动正则化的新型分类和回归框架
IF 7.5 3区 计算机科学
Machine Learning Pub Date : 2024-04-15 DOI: 10.1007/s10994-024-06544-9
Tomás Gutierrez, Davi Valladão, Bernardo K. Pagnoncelli
{"title":"PolieDRO: a novel classification and regression framework with non-parametric data-driven regularization","authors":"Tomás Gutierrez, Davi Valladão, Bernardo K. Pagnoncelli","doi":"10.1007/s10994-024-06544-9","DOIUrl":"https://doi.org/10.1007/s10994-024-06544-9","url":null,"abstract":"<p>PolieDRO is a novel analytics framework for classification and regression that harnesses the power and flexibility of data-driven distributionally robust optimization (DRO) to circumvent the need for regularization hyperparameters. Recent literature shows that traditional machine learning methods such as SVM and (square-root) LASSO can be written as Wasserstein-based DRO problems. Inspired by those results we propose a hyperparameter-free ambiguity set that explores the polyhedral structure of data-driven convex hulls, generating computationally tractable regression and classification methods for any convex loss function. Numerical results based on 100 real-world databases and an extensive experiment with synthetically generated data show that our methods consistently outperform their traditional counterparts.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Did we personalize? Assessing personalization by an online reinforcement learning algorithm using resampling 我们个性化了吗?利用重采样评估在线强化学习算法的个性化程度
IF 7.5 3区 计算机科学
Machine Learning Pub Date : 2024-04-10 DOI: 10.1007/s10994-024-06526-x
Susobhan Ghosh, Raphael Kim, Prasidh Chhabria, Raaz Dwivedi, Predrag Klasnja, Peng Liao, Kelly Zhang, Susan Murphy
{"title":"Did we personalize? Assessing personalization by an online reinforcement learning algorithm using resampling","authors":"Susobhan Ghosh, Raphael Kim, Prasidh Chhabria, Raaz Dwivedi, Predrag Klasnja, Peng Liao, Kelly Zhang, Susan Murphy","doi":"10.1007/s10994-024-06526-x","DOIUrl":"https://doi.org/10.1007/s10994-024-06526-x","url":null,"abstract":"<p>There is a growing interest in using reinforcement learning (RL) to personalize sequences of treatments in digital health to support users in adopting healthier behaviors. Such sequential decision-making problems involve decisions about when to treat and how to treat based on the user’s context (e.g., prior activity level, location, etc.). Online RL is a promising data-driven approach for this problem as it learns based on each user’s historical responses and uses that knowledge to personalize these decisions. However, to decide whether the RL algorithm should be included in an “optimized” intervention for real-world deployment, we must assess the data evidence indicating that the RL algorithm is actually personalizing the treatments to its users. Due to the stochasticity in the RL algorithm, one may get a false impression that it is learning in certain states and using this learning to provide specific treatments. We use a working definition of personalization and introduce a resampling-based methodology for investigating whether the personalization exhibited by the RL algorithm is an artifact of the RL algorithm stochasticity. We illustrate our methodology with a case study by analyzing the data from a physical activity clinical trial called HeartSteps, which included the use of an online RL algorithm. We demonstrate how our approach enhances data-driven truth-in-advertising of algorithm personalization both across all users as well as within specific users in the study.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exposing and explaining fake news on-the-fly 即时揭露和解释假新闻
IF 7.5 3区 计算机科学
Machine Learning Pub Date : 2024-04-10 DOI: 10.1007/s10994-024-06527-w
Francisco de Arriba-Pérez, Silvia García-Méndez, Fátima Leal, Benedita Malheiro, Juan Carlos Burguillo
{"title":"Exposing and explaining fake news on-the-fly","authors":"Francisco de Arriba-Pérez, Silvia García-Méndez, Fátima Leal, Benedita Malheiro, Juan Carlos Burguillo","doi":"10.1007/s10994-024-06527-w","DOIUrl":"https://doi.org/10.1007/s10994-024-06527-w","url":null,"abstract":"<p>Social media platforms enable the rapid dissemination and consumption of information. However, users instantly consume such content regardless of the reliability of the shared data. Consequently, the latter crowdsourcing model is exposed to manipulation. This work contributes with an explainable and online classification method to recognize fake news in real-time. The proposed method combines both unsupervised and supervised Machine Learning approaches with online created lexica. The profiling is built using creator-, content- and context-based features using Natural Language Processing techniques. The explainable classification mechanism displays in a dashboard the features selected for classification and the prediction confidence. The performance of the proposed solution has been validated with real data sets from Twitter and the results attain 80% accuracy and macro <i>F</i>-measure. This proposal is the first to jointly provide data stream processing, profiling, classification and explainability. Ultimately, the proposed early detection, isolation and explanation of fake news contribute to increase the quality and trustworthiness of social media contents.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing reinforcement learning for de novo drug design 利用强化学习进行新药设计
IF 7.5 3区 计算机科学
Machine Learning Pub Date : 2024-04-08 DOI: 10.1007/s10994-024-06519-w
Hampus Gummesson Svensson, Christian Tyrchan, Ola Engkvist, Morteza Haghir Chehreghani
{"title":"Utilizing reinforcement learning for de novo drug design","authors":"Hampus Gummesson Svensson, Christian Tyrchan, Ola Engkvist, Morteza Haghir Chehreghani","doi":"10.1007/s10994-024-06519-w","DOIUrl":"https://doi.org/10.1007/s10994-024-06519-w","url":null,"abstract":"<p>Deep learning-based approaches for generating novel drug molecules with specific properties have gained a lot of interest in the last few years. Recent studies have demonstrated promising performance for string-based generation of novel molecules utilizing reinforcement learning. In this paper, we develop a unified framework for using reinforcement learning for de novo drug design, wherein we systematically study various on- and off-policy reinforcement learning algorithms and replay buffers to learn an RNN-based policy to generate novel molecules predicted to be active against the dopamine receptor DRD2. Our findings suggest that it is advantageous to use at least both top-scoring and low-scoring molecules for updating the policy when structural diversity is essential. Using all generated molecules at an iteration seems to enhance performance stability for on-policy algorithms. In addition, when replaying high, intermediate, and low-scoring molecules, off-policy algorithms display the potential of improving the structural diversity and number of active molecules generated, but possibly at the cost of a longer exploration phase. Our work provides an open-source framework enabling researchers to investigate various reinforcement learning methods for de novo drug design.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-consensus decentralized primal-dual fixed point algorithm for distributed learning 分布式学习的多共识分散原始二元定点算法
IF 7.5 3区 计算机科学
Machine Learning Pub Date : 2024-04-08 DOI: 10.1007/s10994-024-06537-8
Kejie Tang, Weidong Liu, Xiaojun Mao
{"title":"Multi-consensus decentralized primal-dual fixed point algorithm for distributed learning","authors":"Kejie Tang, Weidong Liu, Xiaojun Mao","doi":"10.1007/s10994-024-06537-8","DOIUrl":"https://doi.org/10.1007/s10994-024-06537-8","url":null,"abstract":"<p>Decentralized distributed learning has recently attracted significant attention in many applications in machine learning and signal processing. To solve a decentralized optimization with regularization, we propose a Multi-consensus Decentralized Primal-Dual Fixed Point (MD-PDFP) algorithm. We apply multiple consensus steps with the gradient tracking technique to extend the primal-dual fixed point method over a network. The communication complexities of our procedure are given under certain conditions. Moreover, we show that our algorithm is consistent under general conditions and enjoys global linear convergence under strong convexity. With some particular choices of regularizations, our algorithm can be applied to decentralized machine learning applications. Finally, several numerical experiments and real data analyses are conducted to demonstrate the effectiveness of the proposed algorithm.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning explanatory logical rules in non-linear domains: a neuro-symbolic approach 学习非线性领域中的解释性逻辑规则:一种神经符号方法
IF 7.5 3区 计算机科学
Machine Learning Pub Date : 2024-04-08 DOI: 10.1007/s10994-024-06538-7
Andreas Bueff, Vaishak Belle
{"title":"Learning explanatory logical rules in non-linear domains: a neuro-symbolic approach","authors":"Andreas Bueff, Vaishak Belle","doi":"10.1007/s10994-024-06538-7","DOIUrl":"https://doi.org/10.1007/s10994-024-06538-7","url":null,"abstract":"<p>Deep neural networks, despite their capabilities, are constrained by the need for large-scale training data, and often fall short in generalisation and interpretability. Inductive logic programming (ILP) presents an intriguing solution with its data-efficient learning of first-order logic rules. However, ILP grapples with challenges, notably the handling of non-linearity in continuous domains. With the ascent of neuro-symbolic ILP, there’s a drive to mitigate these challenges, synergising deep learning with relational ILP models to enhance interpretability and create logical decision boundaries. In this research, we introduce a neuro-symbolic ILP framework, grounded on differentiable Neural Logic networks, tailored for non-linear rule extraction in mixed discrete-continuous spaces. Our methodology consists of a neuro-symbolic approach, emphasising the extraction of non-linear functions from mixed domain data. Our preliminary findings showcase our architecture’s capability to identify non-linear functions from continuous data, offering a new perspective in neural-symbolic research and underlining the adaptability of ILP-based frameworks for regression challenges in continuous scenarios.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信