Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, Wulong Liu
{"title":"可解释强化学习调查","authors":"Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, Wulong Liu","doi":"10.1007/s10994-024-06543-w","DOIUrl":null,"url":null,"abstract":"<p>Although deep reinforcement learning has become a promising machine learning approach for sequential decision-making problems, it is still not mature enough for high-stake domains such as autonomous driving or medical applications. In such contexts, a learned policy needs for instance to be interpretable, so that it can be inspected before any deployment (e.g., for safety and verifiability reasons). This survey provides an overview of various approaches to achieve higher interpretability in reinforcement learning (RL). To that aim, we distinguish interpretability (as an intrinsic property of a model) and explainability (as a post-hoc operation) and discuss them in the context of RL with an emphasis on the former notion. In particular, we argue that interpretable RL may embrace different facets: interpretable inputs, interpretable (transition/reward) models, and interpretable decision-making. Based on this scheme, we summarize and analyze recent work related to interpretable RL with an emphasis on papers published in the past 10 years. We also discuss briefly some related research areas and point to some potential promising research directions, notably related to the recent development of foundation models (e.g., large language models, RL from human feedback).</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey on interpretable reinforcement learning\",\"authors\":\"Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, Wulong Liu\",\"doi\":\"10.1007/s10994-024-06543-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although deep reinforcement learning has become a promising machine learning approach for sequential decision-making problems, it is still not mature enough for high-stake domains such as autonomous driving or medical applications. In such contexts, a learned policy needs for instance to be interpretable, so that it can be inspected before any deployment (e.g., for safety and verifiability reasons). This survey provides an overview of various approaches to achieve higher interpretability in reinforcement learning (RL). To that aim, we distinguish interpretability (as an intrinsic property of a model) and explainability (as a post-hoc operation) and discuss them in the context of RL with an emphasis on the former notion. In particular, we argue that interpretable RL may embrace different facets: interpretable inputs, interpretable (transition/reward) models, and interpretable decision-making. Based on this scheme, we summarize and analyze recent work related to interpretable RL with an emphasis on papers published in the past 10 years. We also discuss briefly some related research areas and point to some potential promising research directions, notably related to the recent development of foundation models (e.g., large language models, RL from human feedback).</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06543-w\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06543-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Although deep reinforcement learning has become a promising machine learning approach for sequential decision-making problems, it is still not mature enough for high-stake domains such as autonomous driving or medical applications. In such contexts, a learned policy needs for instance to be interpretable, so that it can be inspected before any deployment (e.g., for safety and verifiability reasons). This survey provides an overview of various approaches to achieve higher interpretability in reinforcement learning (RL). To that aim, we distinguish interpretability (as an intrinsic property of a model) and explainability (as a post-hoc operation) and discuss them in the context of RL with an emphasis on the former notion. In particular, we argue that interpretable RL may embrace different facets: interpretable inputs, interpretable (transition/reward) models, and interpretable decision-making. Based on this scheme, we summarize and analyze recent work related to interpretable RL with an emphasis on papers published in the past 10 years. We also discuss briefly some related research areas and point to some potential promising research directions, notably related to the recent development of foundation models (e.g., large language models, RL from human feedback).
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.