Materials at High Temperatures最新文献

筛选
英文 中文
High-temperature mechanical properties evaluation of 310S stainless steel 310S不锈钢高温力学性能评价
4区 材料科学
Materials at High Temperatures Pub Date : 2023-11-10 DOI: 10.1080/09603409.2023.2281111
Jingwei Zhang, Zhicheng Li, Li Lin, Kanglin Liu
{"title":"High-temperature mechanical properties evaluation of 310S stainless steel","authors":"Jingwei Zhang, Zhicheng Li, Li Lin, Kanglin Liu","doi":"10.1080/09603409.2023.2281111","DOIUrl":"https://doi.org/10.1080/09603409.2023.2281111","url":null,"abstract":"ABSTRACTThe high-temperature mechanical properties of 310S stainless steel were investigated by uniaxial tensile tests and small punch tests at the temperature from 20℃ to 600℃, and the relationship between the mechanical properties (σYS ,σUTS) and the characteristic loads (Fy, Fm) was established. The results revealed that with increasing temperature, the mechanical properties of 310S decrease, and the characteristic loads obtained by Fy_Mao, Fy_EN and Fy_E3205 are more appropriate for determining the yield strength of materials at high temperatures particularly for Fy_E3205. The fracture pattern observed in the SPT specimens indicated a mixed tough-brittle fracture accompanied by the characteristics of cleavage fracture. Additionally, the ultimate tensile strength of the material and the maximum load Fm increased slightly at 400 ℃ compared to 300 ℃ due to the precipitation of a large number of granular carbides and the increase in the grain size.KEYWORDS: 310s steelSmall punch testHigh temperatureMechanical propertiesFracture Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Natural Science Foundation of China (No.51705079), Natural Science Foundation of Fujian Province (No.2018J01767), Open Fund of Fujian Key Laboratory of Energy Measurement(Fujian Metrology Institute) (NYJL-KFKT-2022-02).","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigations on a model of a power plant flange under steady state and transient load 电厂法兰稳态与瞬态负荷模型试验研究
4区 材料科学
Materials at High Temperatures Pub Date : 2023-11-09 DOI: 10.1080/09603409.2023.2278833
K. Kettler, A. Klenk, S. Weihe
{"title":"Experimental investigations on a model of a power plant flange under steady state and transient load","authors":"K. Kettler, A. Klenk, S. Weihe","doi":"10.1080/09603409.2023.2278833","DOIUrl":"https://doi.org/10.1080/09603409.2023.2278833","url":null,"abstract":"ABSTRACTThe design and operation of conventional power plant components is affected by load changes, with the balancing of renewable energy generation leading to an increase in warm and hot starts. Essential parts of these power plant components are flanges e.g. connecting pipes and turbine housings. While being structural rather simple, many influences affect the functionality of these flanges, like the high-temperature behaviour of the bolt material or the temperature distribution in the components. This paper presents parts of a recently finished research project on different influences on the relaxation behaviour of flanges. To investigate the influence of the bolt material, tests were carried out on a model of an IP turbine flange using martensitic X12CrMoWVNbN10-1-1 and nickel-based Ni80A bolts. Each tests included 2000 h of steady state and 3000 h of transient load with a retightening of the bolts after 1500 h. Exemplary relaxation tests on the X12 material provide additional information towards the observed behaviour in the flange tests.KEYWORDS: Stress relaxationcreepturbine flangetransient loadsretightening of boltscomponent testhigh temperature testing AcknowledgmentsThe presented results were obtained at MPA Stuttgart within a research project carried out in the industrial collective research programme (IGF No. 20088 N). It was supported by the Federal Ministry for Economic Affairs and Climate Action (BMWK) through the AiF (German Federation of Industrial Research Associations eV) based on a decision taken by the German Bundestag. The authors would also like to thank the research partners from the IfW Technical University of Darmstadt and the experts from member companies especially from GE Power GmbH, Siemens Energy Global GmbH & Co. KG und MAN Energy Solutions SE for their contributions in the project working group and the provision of various benefits in kind.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the AiF Projekt [20088 N].","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135290867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creep rupture data assessment – new uncertain challenges require new uncertain answers 蠕变断裂数据评估——新的不确定挑战需要新的不确定答案
4区 材料科学
Materials at High Temperatures Pub Date : 2023-11-09 DOI: 10.1080/09603409.2023.2268334
M. Schwienheer, F. Kolzow
{"title":"Creep rupture data assessment – new uncertain challenges require new uncertain answers","authors":"M. Schwienheer, F. Kolzow","doi":"10.1080/09603409.2023.2268334","DOIUrl":"https://doi.org/10.1080/09603409.2023.2268334","url":null,"abstract":"ABSTRACTFor the service life calculation of high-temperature components the knowledge of the creep behaviour of the materials used remain essential. Over decades, many methods have been developed for extrapolating creep rupture strengths. The challenge with these Creep Rupture Data Assessments (CRDAs), however, always remains evaluating the predictive accuracy of creep life. New computer-aided calculation methods allow the use of extensive data on the casts and other experimental data, as well as the application of probabilistic methods. Within the ECCC, software tools are being developed that both leverage the capabilities of new powerful computer-aided computational methods and allow for simultaneous assessment with post-assessment testing in accordance with ECCC recommendations. The authors would like to point out that despite all available tools and guidelines, the expertise and experience of the assessor is an indispensable guarantor for a reliable evaluation.KEYWORDS: Creepcreep rupture dataassessmentpost assessment testsmaximum likelihoodprobabilistic lifetime model AcknowledgmentsThe authors would like to thank the ECCC for its technical and financial support. “So long, and thanks for all the fish” [39].Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the ECCC European Creep Collaborative Committee.","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135291338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Practical application of an ultra-miniature creep test to the remaining creep-rupture life prediction using an iso–stress approach for in-service boiler piping of modified 9Cr-1Mo steel 超小型蠕变试验在等应力法预测9Cr-1Mo改性钢在役锅炉管道剩余蠕变断裂寿命中的实际应用
4区 材料科学
Materials at High Temperatures Pub Date : 2023-11-08 DOI: 10.1080/09603409.2023.2278361
Hirohide Nakatsuka, Chiaki Hisaka, Kazukiyo Takahashi, Akito Nitta, Masatsugu Yaguchi
{"title":"Practical application of an ultra-miniature creep test to the remaining creep-rupture life prediction using an iso–stress approach for in-service boiler piping of modified 9Cr-1Mo steel","authors":"Hirohide Nakatsuka, Chiaki Hisaka, Kazukiyo Takahashi, Akito Nitta, Masatsugu Yaguchi","doi":"10.1080/09603409.2023.2278361","DOIUrl":"https://doi.org/10.1080/09603409.2023.2278361","url":null,"abstract":"ABSTRACTA practical procedure for predicting the remaining creep-rupture life of in-service boiler pipes under their operating conditions is proposed and discussed in this study. Tests were conducted on a coupon obtained using electric discharge sampling equipment from the outer surface of an in-service boiler pipe of modified 9Cr-1Mo steel. An ultra-miniature creep (UMC) specimen machined from the coupon was employed for the tensile creep test. Focusing on an iso–stress approach that has potential for the remaining life prediction using a limited test data, its suitability has been discussed. Test results indicate that the iso–stress approach can be applied to predict the remaining creep-rupture life using the UMC testing method with high accuracy. Furthermore, an examination of the high-temperature oxidation resistance of the UMC specimen indicated that oxidation had little influence on the rupture time.KEYWORDS: In-service pipingmodified 9Cr-1Mo steelremaining creep life predictionultra-miniature specimeniso–stress approachLarson–Miller parameterMonkman–Grant relationshiphigh-temperature oxidation Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135341751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on creep characteristics and the isochronous stress–strain curve of Ni-Cr-Mo superalloy Ni-Cr-Mo高温合金蠕变特性及等时应力-应变曲线研究
4区 材料科学
Materials at High Temperatures Pub Date : 2023-11-08 DOI: 10.1080/09603409.2023.2277565
Guangcheng Fan, Guangzhou Yuan, Wanxia Wang, Songlin Wang, Jianxiong Zhang, Yanyan Jia, Jiamin Wang, Yanling Lu
{"title":"Study on creep characteristics and the isochronous stress–strain curve of Ni-Cr-Mo superalloy","authors":"Guangcheng Fan, Guangzhou Yuan, Wanxia Wang, Songlin Wang, Jianxiong Zhang, Yanyan Jia, Jiamin Wang, Yanling Lu","doi":"10.1080/09603409.2023.2277565","DOIUrl":"https://doi.org/10.1080/09603409.2023.2277565","url":null,"abstract":"ABSTRACTC276 superalloy is considered as a potential structural material for advanced nuclear reactor with good mechanical properties and corrosion resistance. High-temperature creep behaviour of C276 alloy was investigated in the temperature range of 650°C–700°C and at stresses of 140–430 MPa. A linear relationship was fitted between stress and minimum creep rate in the logarithmic coordinate system. The rupture time is analysed for life prediction in terms of isotherm extrapolation method, Monkman–Grant relation, and Larson–Miller parameter method, respectively. The isochronous stress–strain curves as a means of representing stress–strain–time relations under creep conditions were established by the parameter method. The fracture surface morphology of ruptured specimens was characterised by a scanning electron microscope to elucidate the failure mechanism.KEYWORDS: Ni-Mo-Cr superalloycreep rupturelife predictionisochronous stress–strain curve AcknowledgmentsThis work was supported by the National Natural Science Foundation of China (Grant nos. 52071330, 51901241), the Research Project of Shanghai Science and Technology Commission (19DZ2200300), the National Key Research and Development Program (Grant no. 2021YFB3700605), the Young Potential Program of Shanghai Institute of Applied Physics, Chinese Academy of Sciences and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA02004210).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Natural Science Foundation of China [52071330]; National Natural Science Foundation of China [51901241]; the Strategic Priority Research Program of the Chinese Academy of Sciences [XDA02004210]; Research Project of Shanghai Science and Technology Commission [19DZ2200300]; the National Key Research and Development Program [2021YFB3700605].","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135341881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a P91 uniaxial creep model for a wide stress range with an artificial neural network 基于人工神经网络的P91大应力范围单轴蠕变模型的建立
4区 材料科学
Materials at High Temperatures Pub Date : 2023-11-08 DOI: 10.1080/09603409.2023.2276996
D. Baraldi, K.-F Nilsson, S. Holmström, I. Simonovski
{"title":"Development of a P91 uniaxial creep model for a wide stress range with an artificial neural network","authors":"D. Baraldi, K.-F Nilsson, S. Holmström, I. Simonovski","doi":"10.1080/09603409.2023.2276996","DOIUrl":"https://doi.org/10.1080/09603409.2023.2276996","url":null,"abstract":"A uniaxial creep model that describes creep over a wide stress range was developed for P91 steel using an artificial neural network (ANN). The training dataset was based on measurements from uniaxial creep tests and information derived from a combination of the logistic creep strain prediction and the Wilshire models. The ANN model reproduces the training dataset with high accuracy (R2 = 0.975; RMSE (Root Mean Square Error) = 0.19). The model can be easily implemented in finite element analysis (FEA) codes since it provides an analytical expression of the true creep rate as a function of temperature, true stress and true creep strain. In FEA simulations under the same conditions as the training dataset, the model provides times to rupture and minimum creep rates very close to those in the training dataset. The model can be adapted for heats with different properties from the average behaviour of the training dataset by means of a stress-scaling factor.","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135341879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal plasticity model for creep and relaxation deformation of OFP copper OFP铜蠕变松弛变形的晶体塑性模型
4区 材料科学
Materials at High Temperatures Pub Date : 2023-11-06 DOI: 10.1080/09603409.2023.2278232
Tom. Andersson, Matti. Lindroos, Rami. Pohja, Abhishek. Biswas, Supriya. Nandy, Janne. Pakarinen, Juhani. Rantala
{"title":"Crystal plasticity model for creep and relaxation deformation of OFP copper","authors":"Tom. Andersson, Matti. Lindroos, Rami. Pohja, Abhishek. Biswas, Supriya. Nandy, Janne. Pakarinen, Juhani. Rantala","doi":"10.1080/09603409.2023.2278232","DOIUrl":"https://doi.org/10.1080/09603409.2023.2278232","url":null,"abstract":"We demonstrate a dislocation density-based crystal plasticity (CP) model approach for simulating mesoscale deformation and damage. The existing CP framework is extended to be compatible with the oxygen-free phosphorous copper microstructure that is the focus of this study. The key aim is to introduce relevant plastic deformation mechanisms and to develop a failure model capable of depicting creep damage in the material. The effect of local variations in material is evaluated, and the model response is compared with experiments and characterisation. The basis of this work is CP material modelling, including grain orientation and size, obtained using electron backscatter diffraction and experimental test data of real relaxation test specimens. This will yield a realistic description of texture and grain shape and, ultimately, accurate stress–strain response at the microstructural level for further evaluation of performance with respect to material creep(−fatigue) damage.","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of oxide scale and microstructural changes during cyclic hot corrosion on high-temperature tensile properties of Rene-80 superalloy 循环热腐蚀过程中氧化皮和显微组织变化对Rene-80高温合金高温拉伸性能的影响
4区 材料科学
Materials at High Temperatures Pub Date : 2023-11-01 DOI: 10.1080/09603409.2023.2276995
ARMAN Rabieifar, M. REZA Afshar, HAMIDREZA Najafi
{"title":"The effect of oxide scale and microstructural changes during cyclic hot corrosion on high-temperature tensile properties of Rene-80 superalloy","authors":"ARMAN Rabieifar, M. REZA Afshar, HAMIDREZA Najafi","doi":"10.1080/09603409.2023.2276995","DOIUrl":"https://doi.org/10.1080/09603409.2023.2276995","url":null,"abstract":"ABSTRACTThe effect of oxide scale and microstructural changes during 10, 20, and 40 hot corrosion cycles on the high-temperature tensile properties of Rene-80 superalloy at 950 °C was investigated. Due to the formation of micro-cracks and micro-voids, compressive stresses produced from Cr2O3 and NiO growth, and tensile stresses stemming from NiMoO4 transformation and Al internal oxidation, the oxide scale spalled. By increasing the hot corrosion cycles, UTS (Ultimate Tensile Strength) and El.% (Elongation) first decreased and then increased due to the propagation of intergranular vertical cracks from the oxide scale to the Rene-80 after 20 cycles. During hot corrosion cycles, YS increased due to a rise in the density of near-surface intergranular cracks close to the Rene-80/oxide scale interface resulting from micro-void linkage and γ′-depleted zone. Due to the high area fraction and the small average size of secondary γ′, UTS and YS were the highest and lowest after ten cycles, respectively.KEYWORDS: Rene-80 superalloyhot corrosionoxide scaletensile propertiesfracture surfaceγ' precipitate Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135272430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Creep, fatigue and creep-fatigue behaviour of martensitic/bainitic steels and nickel-based alloys and their welded joints at the temperature range 500°C–750°C 马氏体/贝氏体钢和镍基合金及其焊接接头在500℃- 750℃温度范围内的蠕变、疲劳和蠕变疲劳行为
4区 材料科学
Materials at High Temperatures Pub Date : 2023-10-19 DOI: 10.1080/09603409.2023.2261780
Daniel Osorio, Arianna Gotti, Florian Kauffmann, Andreas Klenk, Stefan Weihe
{"title":"Creep, fatigue and creep-fatigue behaviour of martensitic/bainitic steels and nickel-based alloys and their welded joints at the temperature range 500°C–750°C","authors":"Daniel Osorio, Arianna Gotti, Florian Kauffmann, Andreas Klenk, Stefan Weihe","doi":"10.1080/09603409.2023.2261780","DOIUrl":"https://doi.org/10.1080/09603409.2023.2261780","url":null,"abstract":"ABSTRACTThe aim of the paper is to investigate experimentally the fatigue and creep-fatigue material behaviour of improved materials and welded joints for the application in flexible future power plants. These materials promise a reduction in manufacturing costs as well as an increase in flexibility by providing enhanced creep strength thorugh a wall thickness reduction. At the temperature range between 500°C −550°C, the investigation focusses on the creep and low-cycle fatigue behaviour of dissimilar welded joints from conventional materials (bainitic and martensitic materials T24 and T92) to nickel-based alloys (A617B and HR6W) fabricated as tubes. At the temperature range between 700°C and 750°C, it focusses on the creep, low-cycle fatigue and creep-fatigue behaviour of similar and dissimilar welded joints from nickel-based alloys (A740H, A617B and A263) fabricated as tubes and as pipes. Metallographic investigations after testing provide support for understanding the influence of temperature, strain amplitude and dwell time on the microstructure change and the fatigue strength.KEYWORDS: Creepfatiguecreep-fatiguemartensitic/bainitic steelsnickel-based-alloyweld jointstubepipe Additional Notes to AuthorsDo you wish your paper to be submitted to Materials at High Temperatures … … … … … … Yes/NoThose papers accepted for inclusion in the MHT Journal will only appear in the conference proceedings as an abstract with reference to the full paper in the relevant edition of the Journal.An abstract book will be included within the delegate pack as below. You are invited to include a photo of the main author/presenter, to aid networking at the conference. If you prefer not to supply a photo we will happily include the abstract without a photo.Any questions relating to paper/presentation and submission to paper please contact the Chair of the Scientific Committee Dr Augusto Di Gianfrancesco, a.digianfrancesco@libero.it.Any questions relating to the organisation of the conference, registration or administration please contact the Chair of the Organising Committee Dr Peter Barnard, peter.barnard@mpiuk.comAcknowledgmentsThe results presented in this paper were generated within the European Research Project “Ni-based alloys for Operation of 725°C Power Plants, acronym NIBALO725“. This project has received funding from the Research Fund for Coal and Steel under grant agreement No. 709976. The authors thank the project consortium for the fruitful discussion during the project meetings, especially Special Metals for providing the A740H material (tube and pipe) and GE Power GmbH (former GE Boiler Deutschland GmbH) for the fabrication of the pipe and tube weldments.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThis work was supported by the Research Fund for Coal and Steel [709976].","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135729732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the predictive performance of creep models using absolute rather than squared prediction errors: an application to 2.25Cr-1Mo steel and 316H stainless steel 使用绝对而非平方预测误差评估蠕变模型的预测性能:2.25Cr-1Mo钢和316H不锈钢的应用
4区 材料科学
Materials at High Temperatures Pub Date : 2023-10-16 DOI: 10.1080/09603409.2023.2268332
Mark Evans
{"title":"Assessing the predictive performance of creep models using absolute rather than squared prediction errors: an application to 2.25Cr-1Mo steel and 316H stainless steel","authors":"Mark Evans","doi":"10.1080/09603409.2023.2268332","DOIUrl":"https://doi.org/10.1080/09603409.2023.2268332","url":null,"abstract":"A reliable means of assessing the accuracy of a creep model’s predictions is fundamental to safe power plant operation. This paper introduces a method of decomposing the mean absolute prediction error for such a purpose to overcome the limitations that are inherent in the traditional approach of squaring prediction errors to prevent over and underestimates of life offsetting each other. When this method is applied to 2.25Cr-1Mo steel and 316 H stainless steel, it was found that squared errors leads to overestimates of the average prediction error associated with a particular creep model, and it also dramatically underestimates the proportion of this error that is systematic in nature. These differences were more noticeable for 316 H stainless steel.","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136142363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信