Mathematical Methods in the Applied Sciences最新文献

筛选
英文 中文
Energy Decay Estimates for the Wave Equation With Logarithmic Feedback 具有对数反馈的波动方程的能量衰减估计
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-03-01 DOI: 10.1002/mma.10871
Donghao Li, Chenxia Zhang, Hongwei Zhang
{"title":"Energy Decay Estimates for the Wave Equation With Logarithmic Feedback","authors":"Donghao Li,&nbsp;Chenxia Zhang,&nbsp;Hongwei Zhang","doi":"10.1002/mma.10871","DOIUrl":"https://doi.org/10.1002/mma.10871","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, a semilinear wave equation with logarithmic feedback is considered. The polynomial decay of the energy is obtained. The method of proof is based on multipliers technique, on a integral inequality, and on some special algebraic inequalities. The results complement those of the literature about logarithmic damping, and it seem to be an interesting problem in the unknown land of weak damping mechanics.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"10110-10113"},"PeriodicalIF":2.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143949718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of Normal-Regular Solutions of Inhomogeneous System of Partial Differential Equations of Second Order 二阶非齐次偏微分方程组正正则解的构造
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-02-27 DOI: 10.1002/mma.10828
Meiramgul Talipova
{"title":"Construction of Normal-Regular Solutions of Inhomogeneous System of Partial Differential Equations of Second Order","authors":"Meiramgul Talipova","doi":"10.1002/mma.10828","DOIUrl":"https://doi.org/10.1002/mma.10828","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, we consider an inhomogeneous system of second-order partial differential equations with regular singularities at the point (0, 0). The Frobenius-Latysheva method is used to find normally regular solutions. A universal approach to constructing solutions in the vicinity of regular singularities has been developed, the number of linearly independent partial solutions has been determined, and compatibility and integrability conditions have been investigated. Concrete examples demonstrate the use of the method of uncertain coefficients to obtain partial solutions of inhomogeneous systems.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9618-9623"},"PeriodicalIF":2.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted Estimates of the Weyl-Type Operator and Its Compactness weyl型算子的加权估计及其紧性
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-02-27 DOI: 10.1002/mma.10834
Akbota Abylayeva, Alisher Otegen
{"title":"Weighted Estimates of the Weyl-Type Operator and Its Compactness","authors":"Akbota Abylayeva,&nbsp;Alisher Otegen","doi":"10.1002/mma.10834","DOIUrl":"https://doi.org/10.1002/mma.10834","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;In this paper, the results of the necessity and sufficiency conditions of the fact that the operator \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ T $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for the case \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ boldsymbol{p}boldsymbol{le}boldsymbol{q} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is bounded and compact from the weighted Lebesgue space \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;w&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;w&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;I&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {L}_{p,w}&amp;#x0003D;{L}_{p,w}(I) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; to weighted Lebesgue space \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;v&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;I&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {L}_{q,v}&amp;#x0003D;{L}_{q,v}(I) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; are obtained, where \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;w&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 ","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9676-9683"},"PeriodicalIF":2.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global Existence and Blow-Up Phenomenon of Solution for a Viscoelastic Wave Equation With Nonlinear Degenerate Damping and Logarithmic Source Term 具有非线性退化阻尼和对数源项的粘弹性波动方程解的整体存在性和爆破现象
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-02-26 DOI: 10.1002/mma.10842
Shubin Wang, Zijian Du
{"title":"Global Existence and Blow-Up Phenomenon of Solution for a Viscoelastic Wave Equation With Nonlinear Degenerate Damping and Logarithmic Source Term","authors":"Shubin Wang,&nbsp;Zijian Du","doi":"10.1002/mma.10842","DOIUrl":"https://doi.org/10.1002/mma.10842","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;This paper deals with the initial boundary value problem for degenerate damped nonlinear wave equations with logarithmic nonlinearity, given by the equation: \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;∫&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mi&gt;Δ&lt;/mi&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;m&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mi&gt;ln&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 ","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9778-9795"},"PeriodicalIF":2.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Behaviors of the Dark Higher Order Rogue Waves and Interaction Inductions of a (3 + 1)-Dimensional Model 暗高阶异常波的动力学行为和(3 + 1)维模型的相互作用诱导
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-02-26 DOI: 10.1002/mma.10836
Na Cao, XiaoJun Yin, LiYang Xu, ChunXia Wang
{"title":"Dynamic Behaviors of the Dark Higher Order Rogue Waves and Interaction Inductions of a (3 + 1)-Dimensional Model","authors":"Na Cao,&nbsp;XiaoJun Yin,&nbsp;LiYang Xu,&nbsp;ChunXia Wang","doi":"10.1002/mma.10836","DOIUrl":"https://doi.org/10.1002/mma.10836","url":null,"abstract":"<div>\u0000 \u0000 <p>The research obtained dark second-order rogue waves and two sets of interaction solutions for (3 + 1)-dimensional equation by using symbolic calculation and two induction formulas. The two sets of interaction solutions are about second-order rogue waves and multiple stripes, second-order rogue waves and multiple solitons. Six sets of composite diagrams are made to show the interactions in three dimensions. The second-order rogue waves merge from two low-amplitude tops into one high-amplitude top if they meet with multiple stripes, and the amplitude increases with the increase of stripes' number. The second-order rogue waves are usually generated in the center of two kinky solitons if they meet with multiple solitons, and the amplitude increases with the increase of solitons' number. No matter what kind of rendezvous, we see the energy transfer from solitons to rogue waves and back to solitons. This will be useful in studying the evolution of rogue wave.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9695-9706"},"PeriodicalIF":2.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin 1 Particle With Anomalous Magnetic Moment in External Uniform Electric Field, Solutions With Cylindrical Symmetry 外均匀电场中具有反常磁矩的自旋1粒子,圆柱对称解
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-02-26 DOI: 10.1002/mma.10831
Alina Ivashkevich, Viktor Red'kov, Alexander Chichurin
{"title":"Spin 1 Particle With Anomalous Magnetic Moment in External Uniform Electric Field, Solutions With Cylindrical Symmetry","authors":"Alina Ivashkevich,&nbsp;Viktor Red'kov,&nbsp;Alexander Chichurin","doi":"10.1002/mma.10831","DOIUrl":"https://doi.org/10.1002/mma.10831","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;A generalized 10-dimensional Duffin–Kemmer–Petiau equation for spin 1 particle with anomalous magnetic moment is examined in cylindrical coordinates \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;ϕ&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ left(t,r,phi, zright) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in the presence of the external uniform electric field oriented along the axis \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ z $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. On solutions, we diagonalize operators of the energy and third projection of the total angular momentum. First, we derive the system of 10 equations in partial derivatives for functions \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;F&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;z&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;i&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mover&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;10&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;‾&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {F}_ileft(r,zright)&amp;#x0003D;{G}_i(r){H}_i(z)kern0.3em left(i&amp;#x0003D;overline{1,10}right) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The use of the method based on the projective operators permits us to express 10 variables \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 ","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9640-9652"},"PeriodicalIF":2.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple Solutions for a Variable-Order p(x,·)-Kirchhoff-Type Problem With Weight 一类带权变阶p(x,·)- kirchhoff型问题的多重解
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-02-26 DOI: 10.1002/mma.10808
E. Azroul, N. Kamali, M. Shimi
{"title":"Multiple Solutions for a Variable-Order p(x,·)-Kirchhoff-Type Problem With Weight","authors":"E. Azroul,&nbsp;N. Kamali,&nbsp;M. Shimi","doi":"10.1002/mma.10808","DOIUrl":"https://doi.org/10.1002/mma.10808","url":null,"abstract":"<div>\u0000 \u0000 <p>In this study, we establish the existence of three weak solutions for a Kirchhoff-type problem with weight that involves the variable-order \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>,</mo>\u0000 <mo>·</mo>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$$ pleft(x,cdotp right) $$</annotation>\u0000 </semantics></math>-Laplacian operator. We introduce a suitable functional framework for addressing such problems and establish a fundamental continuous and compact embedding theorem of this framework. Using Ricceri's three critical point approach, we prove the existence of weak solutions in the context of weighted variable-order Sobolev spaces with variable exponents.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9430-9439"},"PeriodicalIF":2.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global Classical Solutions for a Chemotaxis System of Attraction–Repulsion With Singular Sensitivity 一类奇异灵敏度吸引-排斥趋化系统的全局经典解
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-02-26 DOI: 10.1002/mma.10806
S. Amalorpava Josephine, S. Karthikeyan, L. Shangerganesh, K. Yadhavan
{"title":"Global Classical Solutions for a Chemotaxis System of Attraction–Repulsion With Singular Sensitivity","authors":"S. Amalorpava Josephine,&nbsp;S. Karthikeyan,&nbsp;L. Shangerganesh,&nbsp;K. Yadhavan","doi":"10.1002/mma.10806","DOIUrl":"https://doi.org/10.1002/mma.10806","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper examines the singular sensitive parabolic attraction–repulsion chemotaxis system with two chemicals subjected to the Neumann boundary condition. Two chemical substances impact the species involved in this biological process. Both signals come from the same species, but a higher concentration of one attracts the species while a lesser concentration repels it. Using the energy estimate approach, we explore the global existence of classical solutions of the proposed model in a spatial domain with a dimension greater than one.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9404-9413"},"PeriodicalIF":2.1,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143950529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pullback Attractors for Nonautonomous Reaction–Diffusion Equations With the Driving Delay Term in ℝN 具有驱动延迟项的非自治反应扩散方程的回拉吸引子
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-02-25 DOI: 10.1002/mma.10843
Yong Ren, Yongqin Xie, Jiangwei Zhang
{"title":"Pullback Attractors for Nonautonomous Reaction–Diffusion Equations With the Driving Delay Term in ℝN","authors":"Yong Ren,&nbsp;Yongqin Xie,&nbsp;Jiangwei Zhang","doi":"10.1002/mma.10843","DOIUrl":"https://doi.org/10.1002/mma.10843","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;In this paper, we mainly investigate the asymptotic behavior of nonautonomous reaction–diffusion equation with the driving delay term in whole space. A new method (or technique) is introduced for verifying the \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℝ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ℝ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ left({C}_{L&amp;amp;amp;#x0005E;2left({mathbb{R}}&amp;amp;amp;#x0005E;Nright)},{C}_{H&amp;amp;amp;#x0005E;1left({mathbb{R}}&amp;amp;amp;#x0005E;Nright)}right) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-pullback \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;𝒟&lt;/mi&gt;\u0000 &lt;/mrow&gt;&lt;/math&gt;-asymptotic compactness of the family of processes (see Theorem 2). As an application, the \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mrow","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9796-9808"},"PeriodicalIF":2.1,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143949874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Immobilized Enzyme Reactions: Nonlinear Kinetics With Fractional- and Integer-Order Analysis 固定化酶反应建模:非线性动力学与分数阶和整阶分析
IF 2.1 3区 数学
Mathematical Methods in the Applied Sciences Pub Date : 2025-02-25 DOI: 10.1002/mma.10791
R. Rajaraman
{"title":"Modeling Immobilized Enzyme Reactions: Nonlinear Kinetics With Fractional- and Integer-Order Analysis","authors":"R. Rajaraman","doi":"10.1002/mma.10791","DOIUrl":"https://doi.org/10.1002/mma.10791","url":null,"abstract":"<div>\u0000 \u0000 <p>This research investigates the immobilization of enzymes within porous materials of varying geometries, such as spherical and cylindrical pellet-shaped catalysts. The study focuses on modeling enzyme reactions using reaction–diffusion equations that capture the irreversible Michaelis–Menten kinetics, emphasizing the nonlinear nature of the process. A distinctive feature of this work is the incorporation of fractional derivatives to enhance the understanding of enzymatic reaction kinetics. To achieve this, a novel computational framework utilizing Laguerre wavelets is developed to compute substrate concentrations and effectiveness factors over a broad range of parameter values. The proposed Laguerre wavelet method (LAWM) is rigorously compared against established analytical and numerical approaches, including the Hermite wavelet method (HWM), Taylor series method (TSM), Adomian decomposition method (ADM), and the fourth-order Runge–Kutta method (RKM). The findings reveal a high degree of accuracy and consistency across all methods, underscoring the reliability and efficiency of the LAWM. This study offers new insights into enzyme kinetics within porous catalysts and highlights the potential of fractional-order models for advancing biocatalytic applications. The outcomes provide a robust theoretical foundation for optimizing the design and performance of immobilized enzyme reactors in industrial and biotechnological settings.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 8","pages":"9177-9193"},"PeriodicalIF":2.1,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143909601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信