求助PDF
{"title":"weyl型算子的加权估计及其紧性","authors":"Akbota Abylayeva, Alisher Otegen","doi":"10.1002/mma.10834","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, the results of the necessity and sufficiency conditions of the fact that the operator \n<span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation>$$ T $$</annotation>\n </semantics></math> for the case \n<span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>≤</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$$ \\boldsymbol{p}\\boldsymbol{\\le}\\boldsymbol{q} $$</annotation>\n </semantics></math> is bounded and compact from the weighted Lebesgue space \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>w</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>w</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {L}_{p,w}&#x0003D;{L}_{p,w}(I) $$</annotation>\n </semantics></math> to weighted Lebesgue space \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>,</mo>\n <mi>v</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n <mo>,</mo>\n <mi>v</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {L}_{q,v}&#x0003D;{L}_{q,v}(I) $$</annotation>\n </semantics></math> are obtained, where \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>w</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n <mo>(</mo>\n <mi>w</mi>\n <mo>,</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ {L}_{p,w}&#x0003D;{L}_p\\left(w,I\\right) $$</annotation>\n </semantics></math> is the set of all measurable functions \n<span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n </mrow>\n <annotation>$$ f $$</annotation>\n </semantics></math> in the interval \n<span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>=</mo>\n <mo>(</mo>\n <mi>a</mi>\n <mo>,</mo>\n <mi>b</mi>\n <mo>)</mo>\n <mo>,</mo>\n <mspace></mspace>\n <mn>0</mn>\n <mo>≤</mo>\n <mi>a</mi>\n <mo><</mo>\n <mi>b</mi>\n <mo>≤</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$$ I&#x0003D;\\left(a,b\\right),\\kern0.3em 0\\le a&lt;b\\le \\infty $$</annotation>\n </semantics></math>, which the norm is finite: \n\n </p><div><span><!--FIGURE-->\n <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mfenced>\n <mrow>\n <mi>f</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>w</mi>\n </mrow>\n </msub>\n <mo>:</mo>\n <mo>=</mo>\n <msup>\n <mrow>\n <mfenced>\n <mrow>\n <munderover>\n <mrow>\n <mo>∫</mo>\n </mrow>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mi>b</mi>\n </mrow>\n </munderover>\n <msup>\n <mrow>\n <mfenced>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msup>\n <mi>w</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mi>d</mi>\n <mi>x</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mfrac>\n <mrow>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n <mo><</mo>\n <mi>∞</mi>\n <mo>.</mo>\n </mrow>\n <annotation>$$ {&#x0007C;|f&#x0007C;|}_{p,w}:&#x0003D; {\\left(\\int_a&#x0005E;b{\\left&#x0007C;f(x)\\right&#x0007C;}&#x0005E;pw(x) dx\\right)}&#x0005E;{\\frac{1}{p}}&lt;\\infty . $$</annotation>\n </semantics></math>\n </span><span></span></div>\n </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 9","pages":"9676-9683"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Estimates of the Weyl-Type Operator and Its Compactness\",\"authors\":\"Akbota Abylayeva, Alisher Otegen\",\"doi\":\"10.1002/mma.10834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, the results of the necessity and sufficiency conditions of the fact that the operator \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation>$$ T $$</annotation>\\n </semantics></math> for the case \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>≤</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation>$$ \\\\boldsymbol{p}\\\\boldsymbol{\\\\le}\\\\boldsymbol{q} $$</annotation>\\n </semantics></math> is bounded and compact from the weighted Lebesgue space \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>w</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>w</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {L}_{p,w}&#x0003D;{L}_{p,w}(I) $$</annotation>\\n </semantics></math> to weighted Lebesgue space \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n <mo>,</mo>\\n <mi>v</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n <mo>,</mo>\\n <mi>v</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {L}_{q,v}&#x0003D;{L}_{q,v}(I) $$</annotation>\\n </semantics></math> are obtained, where \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>w</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mrow>\\n <mi>L</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n <mo>(</mo>\\n <mi>w</mi>\\n <mo>,</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ {L}_{p,w}&#x0003D;{L}_p\\\\left(w,I\\\\right) $$</annotation>\\n </semantics></math> is the set of all measurable functions \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n <annotation>$$ f $$</annotation>\\n </semantics></math> in the interval \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mi>a</mi>\\n <mo>,</mo>\\n <mi>b</mi>\\n <mo>)</mo>\\n <mo>,</mo>\\n <mspace></mspace>\\n <mn>0</mn>\\n <mo>≤</mo>\\n <mi>a</mi>\\n <mo><</mo>\\n <mi>b</mi>\\n <mo>≤</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$$ I&#x0003D;\\\\left(a,b\\\\right),\\\\kern0.3em 0\\\\le a&lt;b\\\\le \\\\infty $$</annotation>\\n </semantics></math>, which the norm is finite: \\n\\n </p><div><span><!--FIGURE-->\\n <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <mi>f</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>,</mo>\\n <mi>w</mi>\\n </mrow>\\n </msub>\\n <mo>:</mo>\\n <mo>=</mo>\\n <msup>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <munderover>\\n <mrow>\\n <mo>∫</mo>\\n </mrow>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <mrow>\\n <mi>b</mi>\\n </mrow>\\n </munderover>\\n <msup>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n <mi>w</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n <mi>d</mi>\\n <mi>x</mi>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <mrow>\\n <mfrac>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </msup>\\n <mo><</mo>\\n <mi>∞</mi>\\n <mo>.</mo>\\n </mrow>\\n <annotation>$$ {&#x0007C;|f&#x0007C;|}_{p,w}:&#x0003D; {\\\\left(\\\\int_a&#x0005E;b{\\\\left&#x0007C;f(x)\\\\right&#x0007C;}&#x0005E;pw(x) dx\\\\right)}&#x0005E;{\\\\frac{1}{p}}&lt;\\\\infty . $$</annotation>\\n </semantics></math>\\n </span><span></span></div>\\n </div>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":\"48 9\",\"pages\":\"9676-9683\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10834\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10834","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
在本文中,在加权勒贝格空间中,得到了p≤q $$ $ \boldsymbol{p}\boldsymbol{\le}\boldsymbol{q} $$是有界紧致的算子T $$ $ T $$的充要条件的结果L p w = L p,w (I) $$ {L}_{p,w}={L}_{p,w}(I) $$到加权勒贝格空间lq,v = lq,v (I) $$ {L}_{q,v}={L}_{q,v}(I) $$,其中L p, w = L p (w,I) $$ {L}_{p,w}={L}_p\left(w,I\right) $$是区间I = (a, b)内所有可测函数f $$ f $$ $的集合,0≤a <;b≤∞$$ I=\left(a,b\right),\kern0; 3em 0\le a<b\le \ inty $$,其范数是有限的:F p,w :=∫abF (x)pw (x) dx1 p <;∞ .$ $ {, # x0007C; |的# x0007C; |} _ {p w}:, # x0003D;{\离开(\ int_a& # x0005E; b {\ left& # x0007C; f (x) \ right& # x0007C;}, # x0005E; pw (x) dx \右)},# x0005E;{\压裂{1}{p}}, lt; \ infty。$ $
本文章由计算机程序翻译,如有差异,请以英文原文为准。