Mechatronics最新文献

筛选
英文 中文
Natural efficient gaits from Nonholonomic Locomotion Nonlinear Normal Mode (NL-NNM): The Pendrivencar case 非完整运动非线性正态模式(NL-NNM)的自然有效步态:Pendrivencar情况
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2025-06-20 DOI: 10.1016/j.mechatronics.2025.103366
Mirado Rajaomarosata, Luc Jaulin, Lionel Lapierre, Simon Rohou
{"title":"Natural efficient gaits from Nonholonomic Locomotion Nonlinear Normal Mode (NL-NNM): The Pendrivencar case","authors":"Mirado Rajaomarosata,&nbsp;Luc Jaulin,&nbsp;Lionel Lapierre,&nbsp;Simon Rohou","doi":"10.1016/j.mechatronics.2025.103366","DOIUrl":"10.1016/j.mechatronics.2025.103366","url":null,"abstract":"<div><div>Bio-inspired robots remain far less energy-efficient than animals because conventional controllers impose trajectories that fight passive dynamics, whereas animals exploit resonance through <em>natural nonlinear normal modes (NNM)</em>, whose periodic internal motions form a smooth 2D invariant surface; We ask how to define and compute the <em>natural motions of a conservative locomotion system</em>: propulsion arises only from <em>no-slip constraints</em>, and once initiated, a gait persists without actuation—like a frictionless pendulum. We tackle non-holonomic constraints on the <em>Pendrivencar</em>, a vehicle driven by a <em>motorised pendulum with a cubic torsional spring</em>; We introduce the <strong>Nonholonomic Locomotion - NNM (NL-NNM)</strong>: extract a <em>high-speed spectral seed</em> – where chassis oscillations vanish and the pendulum is neutrally stable – refine the periodic orbit, and continue the resulting <em>2D invariant manifold</em> via pseudo-arclength across <em>three slow centre manifolds</em> (stable for positive speed, neutral at zero, unstable for negative) from non-isolated rectilinear equilibria; We demonstrate the first NL-NNM for a moving non-holonomic robot: internal orbits produce a <em>pendulum–chassis choreography</em> whose <em>energy-dependent frequency shifts</em> and <em>harmonic richness</em> exceed linear predictions. Via <em>geometric phase</em>, each orbit yields undulatory straight-line motion. A <em>dual-loop control simulation</em> confirms autonomous path tracking with only the pendulum; Extending to dissipative regimes via <em>non-linear resonant modes</em> offers a path to high-efficiency locomotion in aquatic, aerial, legged, soft-bodied, and other robots.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103366"},"PeriodicalIF":3.1,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning an inverse thermodynamic model for Pneumatic Artificial Muscles control 学习气动人工肌肉控制的逆热力学模型
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2025-06-19 DOI: 10.1016/j.mechatronics.2025.103359
G. Wang , R. Chalard , J.A. Cifuentes , M.T. Pham
{"title":"Learning an inverse thermodynamic model for Pneumatic Artificial Muscles control","authors":"G. Wang ,&nbsp;R. Chalard ,&nbsp;J.A. Cifuentes ,&nbsp;M.T. Pham","doi":"10.1016/j.mechatronics.2025.103359","DOIUrl":"10.1016/j.mechatronics.2025.103359","url":null,"abstract":"<div><div>Pneumatic Artificial Muscles (PAMs) are highly nonlinear actuators widely used in robotics, rehabilitation, and other dynamic applications. Their complex behavior poses significant challenges for traditional system identification methods. Although machine learning techniques have shown remarkable success in modeling nonlinear systems, their black-box nature often leads to interpretability issues and susceptibility to overfitting. This study proposes a novel hybrid modeling approach that combines the strengths of analytical models with neural networks to capture the inverse thermodynamic behavior of PAMs. The results demonstrate that the hybrid model outperformed both analytical and purely neural network models. The obtained models were further used for model-based control design and the results show that the application of hybrid model improved the tracking performance.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103359"},"PeriodicalIF":3.1,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144313090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robotized Incremental Sheet Forming trajectory control using deep neural network for force/torque compensator and task-space error tracking controller 基于深度神经网络的力/扭矩补偿器和任务空间误差跟踪控制器的自动化增量成形轨迹控制
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2025-06-19 DOI: 10.1016/j.mechatronics.2025.103360
Xuan Dung To , Jefferson Roman Blanco , Sandra Zimmer-Chevret , Ghinwa Ouaidat , Thibaut Raharijaona , Farid Noureddine , Micky Rakotondrabe
{"title":"Robotized Incremental Sheet Forming trajectory control using deep neural network for force/torque compensator and task-space error tracking controller","authors":"Xuan Dung To ,&nbsp;Jefferson Roman Blanco ,&nbsp;Sandra Zimmer-Chevret ,&nbsp;Ghinwa Ouaidat ,&nbsp;Thibaut Raharijaona ,&nbsp;Farid Noureddine ,&nbsp;Micky Rakotondrabe","doi":"10.1016/j.mechatronics.2025.103360","DOIUrl":"10.1016/j.mechatronics.2025.103360","url":null,"abstract":"<div><div>In Robotized Incremental Sheet Forming (ISF), achieving precise geometrical accuracy is a challenging task due to trajectory tool center point (TCP) position errors at the forming tool attached to the robot’s end-effector. These errors primarily arise from external disturbance forces and torques generated during the interaction between the forming tool and the elastic metal sheet. While joint-torque space controllers can mitigate reaction forces and torques through dynamic modeling, joint-space control has inherent limitations, particularly for industrial high-load robots like the ABB IRB 8700. To overcome these challenges, this work implements an external force/torque (F/T) compensator in task-space using a deep neural network. The network predicts trajectory errors induced by reaction forces and torques measured via a 6-axis F/T sensor. Additionally, the forming tool’s trajectory is precisely monitored using a laser tracker, which serves as a feedback mechanism in a closed-loop task-space error-tracking controller. This controller detects and corrects trajectory deviations in real time. By integrating the F/T compensator and the task-space error-tracking controller, the proposed approach effectively compensates for reaction forces and torques while addressing additional errors introduced by other process-related factors. This integration results in significantly enhanced accuracy in robotic incremental forming processes.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103360"},"PeriodicalIF":3.1,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics modeling and μ synthesis for a parallel - suspension type inertially stabilized platform 并联悬架型惯性稳定平台动力学建模与μ综合
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2025-06-16 DOI: 10.1016/j.mechatronics.2025.103363
Yin Sun, Feng Zhao, Zhenjing Guo, Xiaojun Yan
{"title":"Dynamics modeling and μ synthesis for a parallel - suspension type inertially stabilized platform","authors":"Yin Sun,&nbsp;Feng Zhao,&nbsp;Zhenjing Guo,&nbsp;Xiaojun Yan","doi":"10.1016/j.mechatronics.2025.103363","DOIUrl":"10.1016/j.mechatronics.2025.103363","url":null,"abstract":"<div><div>The parallel-suspension type inertially stabilized platform utilizes a unique flexible support structure and non-contact linear actuators to enable simultaneous high-efficiency vibration suppression control of optical payloads across multiple degrees of freedom. Compared to traditional series – gimbals type stabilized platforms, it offers a higher payload-to-weight ratio and rapid response characteristics. In this paper, a 6-degree-of-freedom dynamic model for the parallel-suspension inertially stabilized platform is established, a control method is designed, and an actual engineering prototype is constructed. Specifically, a flexible support element model that accounts for column instability phenomenon is developed. Based on the parallel mount configuration a complete 6-degree-of-freedom dynamic model of the entire platform is constructed. Furthermore, due the variable parameter characteristics of flexible elastic elements, a <em>μ</em> synthesis control method considering the uncertainty of model parameters is designed. The experimental results show that the <em>μ</em> controller can effectively reduce the external sinusoidal angular disturbance to less than 25 % and the linear vibration disturbance to less than 3 % of the original disturbance while maintaining the robustness. Both simulation and experimental results verify the correctness and effectiveness of the proposed model and method.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103363"},"PeriodicalIF":3.1,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144291496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A robust feedback-linearization MPC with artificial target for UGVs 基于人工目标的ugv鲁棒反馈线性化MPC
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2025-06-14 DOI: 10.1016/j.mechatronics.2025.103358
Bruno S.S. Pereira , Tito L.M. Santos , Andre G.S. Conceicao
{"title":"A robust feedback-linearization MPC with artificial target for UGVs","authors":"Bruno S.S. Pereira ,&nbsp;Tito L.M. Santos ,&nbsp;Andre G.S. Conceicao","doi":"10.1016/j.mechatronics.2025.103358","DOIUrl":"10.1016/j.mechatronics.2025.103358","url":null,"abstract":"<div><div>This paper proposes a new robust feedback-linearization MPC for a class of Unmanned Ground Vehicles. A robust MPC for trajectory tracking with an artificial target is combined with a suitable constraint mapping to ensure robust constraint satisfaction and recursive feasibility despite the effect of bounded disturbances. The artificial reference provides a potentially enlarged domain of attraction, and an analytical target modification is used to achieve the convergence of the tracking error to a minimal robust positively invariant set. The feedback-linearization trade-off concerning the transformed constraints is also analyzed. A case study demonstrating the control strategy’s performance is presented using the Clearpath Husky A200 UGV and the OptiTrack motion capture system.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103358"},"PeriodicalIF":3.1,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144289012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comfort-enhanced longitudinal control for DDEVs: A robust brake coordination approach leveraging reactive anti-dive forces DDEVs纵向舒适控制:一种利用反俯冲力的稳健制动协调方法
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2025-06-14 DOI: 10.1016/j.mechatronics.2025.103357
Yanjun Ren , Tong Shen , Mingzhuo Zhao , Fanxun Wang , Liwei Xu , Guodong Yin
{"title":"Comfort-enhanced longitudinal control for DDEVs: A robust brake coordination approach leveraging reactive anti-dive forces","authors":"Yanjun Ren ,&nbsp;Tong Shen ,&nbsp;Mingzhuo Zhao ,&nbsp;Fanxun Wang ,&nbsp;Liwei Xu ,&nbsp;Guodong Yin","doi":"10.1016/j.mechatronics.2025.103357","DOIUrl":"10.1016/j.mechatronics.2025.103357","url":null,"abstract":"<div><div>Distributed drive electric vehicles actuated by in-wheel motors and brake-by-wire systems enable tracking target motion while improving extra vehicle performance. Outboard brake torque allocated on front and rear wheels generates diverse vertically reactive anti-dive forces, providing an innovative approach to mitigate brake dive without requiring active suspensions. However, the differing dynamics of regenerative and hydraulic braking, along with multiple uncertain vehicle parameters, pose significant challenges to achieving robustness under mixed uncertainties. Moreover, pitch-induced bias in onboard acceleration measurements further degrades control accuracy. To address above problems, this paper proposes a robust, comfort-enhanced longitudinal control system with coordinated braking. A three-degree-of-freedom vehicle dynamics model is developed to incorporate the effect of anti-dive forces. For accurate feedback, a robust <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></mrow></math></span> observer is designed to compensate pitch-variation-related acceleration measurement biases. By integrating dynamic and parametric uncertainties into the control-oriented model, the mixed <span><math><mi>μ</mi></math></span>-synthesis is employed to design a two-degree-of-freedom controller to robustly optimize the acceleration tracking and anti-dive performance. Compared to the controller designed by standard <span><math><mi>μ</mi></math></span>-synthesis, the proposed approach achieves a 10% improvement in robust performance. Real-vehicle experiments validate the system’s effectiveness, demonstrating over a 27% reduction in pitch angle while maintaining satisfactory acceleration responses under blended braking conditions.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103357"},"PeriodicalIF":3.1,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144281075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and prediction of nonlinear cable slab dynamics using Koopman operators 基于Koopman算子的非线性索板动力学建模与预测
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2025-06-07 DOI: 10.1016/j.mechatronics.2025.103353
Michael Pumphrey , Almuatazbellah M. Boker , Mohammad Al Saaideh , Natheer Alatawneh , Yazan M. Al-Rawashdeh , Khaled Aljanaideh , Mohammad Al Janaideh
{"title":"Modeling and prediction of nonlinear cable slab dynamics using Koopman operators","authors":"Michael Pumphrey ,&nbsp;Almuatazbellah M. Boker ,&nbsp;Mohammad Al Saaideh ,&nbsp;Natheer Alatawneh ,&nbsp;Yazan M. Al-Rawashdeh ,&nbsp;Khaled Aljanaideh ,&nbsp;Mohammad Al Janaideh","doi":"10.1016/j.mechatronics.2025.103353","DOIUrl":"10.1016/j.mechatronics.2025.103353","url":null,"abstract":"<div><div>A novel approach for modeling the nonlinear dynamics of cable slabs using Koopman operator theory is presented. Cable slab dynamics are a critical challenge in precision motion systems, as the cables can induce undesired vibrations and disturbances on motion stages. To address this, a higher-dimensional state-space model with nonlinear observable functions is developed to approximate the cable slab dynamics. The proposed model achieves a prediction error within <span><math><mrow><mo>∼</mo><mn>1</mn></mrow></math></span>% over the specified motion range and demonstrates robustness in predicting untrained, randomized, acyclic cable slab motions. A systematic evaluation of various observable functions was conducted to minimize the modeling errors, leading to an optimized model with fractional-order exponents. When compared with a neural network-based state-space model (NN-SS), the Koopman approach demonstrated faster training and better performance. For force prediction, the Koopman approach achieved a reduction of three-quarters in maximum error when compared with the NN-SS method. This work offers a concise and experimentally validated analytical framework specifically for developing accurate predictive models of nonlinear cable slab dynamics.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103353"},"PeriodicalIF":3.1,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144230252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Residual vibration suppression of large-size flexible hydraulic manipulator under external disturbance with accurate positioning 基于精确定位的大型柔性液压机械臂外部扰动残余振动抑制
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2025-06-04 DOI: 10.1016/j.mechatronics.2025.103355
Min Cheng , Xin Zhang , Ruqi Ding , Junhui Zhang , Bing Xu
{"title":"Residual vibration suppression of large-size flexible hydraulic manipulator under external disturbance with accurate positioning","authors":"Min Cheng ,&nbsp;Xin Zhang ,&nbsp;Ruqi Ding ,&nbsp;Junhui Zhang ,&nbsp;Bing Xu","doi":"10.1016/j.mechatronics.2025.103355","DOIUrl":"10.1016/j.mechatronics.2025.103355","url":null,"abstract":"<div><div>To reduce residual vibration with accurate positioning for a flexible hydraulic manipulator, this paper proposes a dual-impulse vibration suppression method to implement concrete pumping tasks. Through sealing up the load-bearing chamber and allow fluid exchange in the non-bearing chamber by individual metering control (IMC), a valve-based volume control method without position sensors is proposed to replace direct positioning control of the end point. Besides, a dual-impulse valve controller is designed for making an online tradeoff between vibration suppression and accurate positioning under a specific pumping posture. Based on only pressure feedback, the amplitude and the time width of the two impulses are determined via system identification in advance and vibration prediction in real-time. Experimental tests are carried out using a 13m-length hydraulic manipulator under three different postures. The test results show that the vibration caused by disturbance can be effectively reduced using the proposed method, and more importantly the position of the end point can be maintained accurately.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"110 ","pages":"Article 103355"},"PeriodicalIF":3.1,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144213503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive model-free control for ankle-assistive orthosis: A robust approach to real-time gait tracking 踝关节辅助矫形器的自适应无模型控制:实时步态跟踪的鲁棒方法
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2025-05-30 DOI: 10.1016/j.mechatronics.2025.103341
Oussama Bey, Yacine Amirat, Samer Mohammed
{"title":"Adaptive model-free control for ankle-assistive orthosis: A robust approach to real-time gait tracking","authors":"Oussama Bey,&nbsp;Yacine Amirat,&nbsp;Samer Mohammed","doi":"10.1016/j.mechatronics.2025.103341","DOIUrl":"10.1016/j.mechatronics.2025.103341","url":null,"abstract":"<div><div>Actuated Ankle-Foot Orthoses (AAFOs) assist dorsiflexion and plantarflexion movements at the ankle joint, supporting mobility and rehabilitation by complementing the wearer’s residual muscular activity within an assist-as-needed paradigm. Their effectiveness depends on advanced control strategies and accurate modeling of the coupled human-AAFO dynamics, which remains a challenging task. This paper presents a novel assist-as-needed control approach for an AAFO/wearer system based on an adaptive model-free framework, without the need for a dynamic model of the AAFO/wearer system. The proposed approach uses an ultra-local model, wherein a intelligent projection-based adaptive PID (iA-PID) controller is designed to achieve satisfactory tracking of a reference ankle joint trajectory. External torques affecting the AAFO/wearer system are estimated using a time-delay estimator and are compensated within the iPA-PID controller to ensure assist-as-needed control. Additionally, the projection operator constrains the evolution of the adaptive parameters, preventing actuator saturation and enabling controlled assistance delivery. Finite-time stability of the resulting closed-loop system is proven, and the final value theorem ensures that the tracking error converges to zero. The performance of the proposed approach is evaluated through simulations and real-time experiments with four healthy subjects. A comparison of tracking performance with several benchmark approaches was conducted as well as robustness tests under varying walking speeds to confirm the effectiveness and reliability of the proposed control approach.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"109 ","pages":"Article 103341"},"PeriodicalIF":3.1,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144169443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A real-time lane change trajectory planning approach for autonomous vehicles utilizing tire force prediction 基于胎力预测的自动驾驶汽车实时变道轨迹规划方法
IF 3.1 3区 计算机科学
Mechatronics Pub Date : 2025-05-30 DOI: 10.1016/j.mechatronics.2025.103351
Lin Li , Serdar Coskun , Youming Fan , Caiguang Yu , Fengqi Zhang
{"title":"A real-time lane change trajectory planning approach for autonomous vehicles utilizing tire force prediction","authors":"Lin Li ,&nbsp;Serdar Coskun ,&nbsp;Youming Fan ,&nbsp;Caiguang Yu ,&nbsp;Fengqi Zhang","doi":"10.1016/j.mechatronics.2025.103351","DOIUrl":"10.1016/j.mechatronics.2025.103351","url":null,"abstract":"<div><div>For lane change behavior under extreme operating conditions, existing models cannot calculate in real time the tire force of the vehicle lane change over a sufficiently long time frame in the future. In order to address this problem, a novel scheme is presented for real-time trajectory planning of autonomous vehicles, which incorporates personalized vehicle dynamics. We first establish lateral dynamics models for four-wheel-steering and front-wheel-steering vehicles along with a nonlinear tire model. Then, we construct a fuzzy logic mechanism to characterize the relationship between the vehicle lateral/longitudinal acceleration and the future lateral/longitudinal tire force, to quantify whether the vehicle tire force reaches saturation in trajectory planning in real time. A safety assessment model is introduced to measure the risk of side slippage of the vehicle and collision under extreme operating conditions. In addition, lane change behavior is designed as a nonlinear programming model and a gradient descent method is used to obtain optimal lateral and longitudinal accelerations online. The geometric curve fitting method is utilized to generate the lane change trajectory. The simulation results using MATLAB/Simulink demonstrate that the solution time of our method is significantly lower than that of the widely used vehicle dynamics method and the newest Neural Network method, which can realize real-time prediction of the maximum tire force before lane change. Moreover, our method improves the ability to calculate the risk of longitudinal and lateral coupling of a lane change in extreme operating conditions and then realizes trajectory planning in a vehicle-dynamics-specific way.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"109 ","pages":"Article 103351"},"PeriodicalIF":3.1,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144169454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信