Medical Decision Making最新文献

筛选
英文 中文
Integrating Shared Decision Making and Decision Support Tools into Clinical Practice Guidelines: What Does It Take? A Qualitative Study. 将共享决策和决策支持工具整合到临床实践指南中:需要什么?定性研究。
IF 3.1 3区 医学
Medical Decision Making Pub Date : 2025-09-15 DOI: 10.1177/0272989X251368866
Lena Fischer, Rahel Wollny, Leon V Schewe, Fülöp Scheibler, Torsten Karge, Thomas Langer, Corinna Schaefer, Ivan D Florez, Andrew Hutchinson, Sheyu Li, Marta Maes-Carballo, Zachary Munn, Lilisbeth Perestelo-Perez, Livia Puljak, Anne Stiggelbout, Dawid Pieper
{"title":"Integrating Shared Decision Making and Decision Support Tools into Clinical Practice Guidelines: What Does It Take? A Qualitative Study.","authors":"Lena Fischer, Rahel Wollny, Leon V Schewe, Fülöp Scheibler, Torsten Karge, Thomas Langer, Corinna Schaefer, Ivan D Florez, Andrew Hutchinson, Sheyu Li, Marta Maes-Carballo, Zachary Munn, Lilisbeth Perestelo-Perez, Livia Puljak, Anne Stiggelbout, Dawid Pieper","doi":"10.1177/0272989X251368866","DOIUrl":"https://doi.org/10.1177/0272989X251368866","url":null,"abstract":"<p><p><b>Background.</b> Awareness of shared decision making (SDM) is growing, but its integration into clinical practice guidelines (CPGs) remains challenging. We sought expert insights to identify strategies for more successfully integrating SDM and decision support tools into CPGs. Specifically, our objectives were to determine 1) how to identify CPG recommendations where SDM is most relevant and 2) what factors in CPG development hinder or facilitate the consideration of SDM and the development of decision support tools. <b>Methods</b>. We conducted semi-structured interviews with experts on CPGs and SDM. We analyzed the data using Mayring's qualitative content analysis. <b>Results.</b> The 16 interviewed participants proposed several determinants of and strategies for identifying SDM-relevant recommendations. The most frequently mentioned determinant was \"multiple options with benefits and harms where choices depend on individual preferences.\" The most frequently mentioned strategy was prioritization, similar to the CPG scoping phase. Participants highlighted the role of patient partners in facilitating the consideration of SDM in CPG development but noted that a supportive culture toward both patient and public involvement and SDM is needed. The absence of standardized methods and inadequate resources hinder the consideration of SDM and the combined development of CPGs and decision support tools. The current format of CPGs was deemed overwhelming, while the inclusion of choice awareness in CPG recommendations could facilitate SDM. <b>Conclusions.</b> The identified strategies provide a starting point for CPG organizations to explore ways for integrating SDM and decision support tools into CPGs while considering context-specific barriers and facilitators. <b>Implications.</b> Further research is needed to assess the usefulness and feasibility of the proposed strategies. New policies and stronger collaboration between CPG and SDM communities appear to be needed to address identified barriers.HighlightsWe explored expert knowledge and experience on how to successfully integrate shared decision making (SDM) and decision support tools into clinical practice guidelines (CPGs).A combined development of CPGs and decision support tools was deemed essential; however, development processes often remain separate, with the CPG development group unaware of the decision support tool development group, and vice versa.In addition to stating choice awareness in CPGs, participants highlighted the critical role of patient partners in considering SDM in CPG development, but resource issues and a culture that neglects patient involvement and SDM remain.For CPG development groups to consider SDM and for health care professionals to practice it, things need to be as easy as possible.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"272989X251368866"},"PeriodicalIF":3.1,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145071083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
So You've Got a High AUC, Now What? An Overview of Important Considerations when Bringing Machine-Learning Models from Computer to Bedside. 所以你有一个高AUC,现在怎么办?将机器学习模型从计算机应用到病床时的重要考虑概述。
IF 3.1 3区 医学
Medical Decision Making Pub Date : 2025-08-01 Epub Date: 2025-05-29 DOI: 10.1177/0272989X251343082
Jiawen Deng, Mohamed E Elghobashy, Kathleen Zang, Shubh K Patel, Eddie Guo, Kiyan Heybati
{"title":"So You've Got a High AUC, Now What? An Overview of Important Considerations when Bringing Machine-Learning Models from Computer to Bedside.","authors":"Jiawen Deng, Mohamed E Elghobashy, Kathleen Zang, Shubh K Patel, Eddie Guo, Kiyan Heybati","doi":"10.1177/0272989X251343082","DOIUrl":"10.1177/0272989X251343082","url":null,"abstract":"<p><p>Machine-learning (ML) models have the potential to transform health care by enabling more personalized and data-driven clinical decision making. However, their successful implementation in clinical practice requires careful consideration of factors beyond predictive accuracy. We provide an overview of essential considerations for developing clinically applicable ML models, including methods for assessing and improving calibration, selecting appropriate decision thresholds, enhancing model explainability, identifying and mitigating bias, as well as methods for robust validation. We also discuss strategies for improving accessibility to ML models and performing real-world testing.HighlightsThis tutorial provides clinicians with a comprehensive guide to implementing machine-learning classification models in clinical practice.Key areas covered include model calibration, threshold selection, explainability, bias mitigation, validation, and real-world testing, all of which are essential for the clinical deployment of machine-learning models.Following these guidance can help clinicians bridge the gap between machine-learning model development and real-world application and enhance patient care outcomes.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"640-653"},"PeriodicalIF":3.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260203/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144175400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decision Frameworks for Assessing Cost-Effectiveness Given Previous Nonoptimal Decisions. 基于非最优决策评估成本效益的决策框架。
IF 3.1 3区 医学
Medical Decision Making Pub Date : 2025-08-01 Epub Date: 2025-06-12 DOI: 10.1177/0272989X251340941
Doug Coyle, David Glynn, Jeremy D Goldhaber-Fiebert, Edward C F Wilson
{"title":"Decision Frameworks for Assessing Cost-Effectiveness Given Previous Nonoptimal Decisions.","authors":"Doug Coyle, David Glynn, Jeremy D Goldhaber-Fiebert, Edward C F Wilson","doi":"10.1177/0272989X251340941","DOIUrl":"10.1177/0272989X251340941","url":null,"abstract":"<p><p>IntroductionEconomic evaluations identify the best course of action by a decision maker with respect to the level of health within the overall population. Traditionally, they identify 1 optimal treatment choice. In many jurisdictions, multiple technologies can be covered for the same heterogeneous patient population, which limits the applicability of this framework for directly determining whether a new technology should be covered. This article explores the impact of different decision frameworks within this context.MethodsThree alternate decision frameworks were considered: the traditional normative framework in which only the optimal technology will be covered (normative); a commonly adopted framework in which the new technology is recommended for reimbursement only if it is optimal, with coverage of other technologies remaining as before (current); and a framework that assesses specifically whether coverage of the new technology is optimal, incorporating previous reimbursement decisions and the market share of current technologies (positivist). The implications of the frameworks were assessed using a simulated probabilistic Markov model for a chronic progressive condition.ResultsResults illustrate how the different frameworks can lead to different reimbursement recommendations. This in turn produces differences in population health effects and the resultant price reductions required for covering the new technology.ConclusionBy covering only the optimal treatment option, decision makers can maximize the level of health across a population. If decision makers are unwilling to defund technologies, however, the second best option of adopting the positivist framework has the greatest relevance with respect to deciding whether a new technology should be covered.HighlightsTraditionally, economic evaluations focus on identifying the optimal treatment choice.This paper considers three alternative decision frameworks, within the context of multiple technologies being covered for the same heterogeneous patient population.This paper highlight that if decision makers are unwilling to defund therapies, current approaches to assessing cost effectiveness may be non-optimal.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"703-713"},"PeriodicalIF":3.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144276466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Machine Learning Mortality Risk Prediction on Clinician Prognostic Accuracy and Decision Support: A Randomized Vignette Study. 机器学习死亡率风险预测对临床医生预后准确性和决策支持的影响:一项随机研究。
IF 3.1 3区 医学
Medical Decision Making Pub Date : 2025-08-01 Epub Date: 2025-07-04 DOI: 10.1177/0272989X251349489
Ravi B Parikh, William J Ferrell, Anthony Girard, Jenna White, Sophia Fang, Justin E Bekelman, Marilyn M Schapira
{"title":"The Impact of Machine Learning Mortality Risk Prediction on Clinician Prognostic Accuracy and Decision Support: A Randomized Vignette Study.","authors":"Ravi B Parikh, William J Ferrell, Anthony Girard, Jenna White, Sophia Fang, Justin E Bekelman, Marilyn M Schapira","doi":"10.1177/0272989X251349489","DOIUrl":"10.1177/0272989X251349489","url":null,"abstract":"&lt;p&gt;&lt;p&gt;BackgroundMachine learning (ML) algorithms may improve the prognosis for serious illnesses such as cancer, identifying patients who may benefit from earlier palliative care (PC) or advance care planning (ACP). We evaluated the impact of various presentation strategies of a hypothetical ML algorithm on clinician prognostic accuracy and decision making.MethodsThis was a randomized clinical vignette survey study among medical oncologists who treat metastatic non-small-cell lung cancer (mNSCLC). Between March and June 2023, clinicians were shown 3 vignettes of patients presenting with mNSCLC. The vignettes varied by prognostic risk, as defined from the Lung Cancer Prognostic Index (LCPI). Clinicians estimated life expectancy in months and made recommendations about PC and ACP. Clinicians were then shown the same vignette with a hypothetical survival estimate from a black-box ML algorithm; clinicians were randomized to receive the ML prediction using absolute and/or reference-dependent prognostic estimates. The primary outcome was prognostic accuracy relative to the LCPI.ResultsAmong 51 clinicians with complete responses, the median years in practice was 7 (interquartile range 3.5-19), 14 (27.5%) were female, 23 (45.1%) practiced in a community oncology setting, and baseline accuracy was 54.9% (95% confidence interval [CI] 47.0-62.8) across all vignettes. ML presentation improved accuracy (mean change relative to baseline 20.9%, 95% CI 13.9-27.9, &lt;i&gt;P&lt;/i&gt; &lt; 0.001). ML outputs using an absolute presentation strategy alone (mean change 27.4%, 95% 16.8-38.1, &lt;i&gt;P&lt;/i&gt; &lt; 0.001) or with reference dependence (mean change 33.4%, 95% 23.9-42.8, &lt;i&gt;P&lt;/i&gt; &lt; 0.001) improved accuracy, but reference dependence alone did not (mean change 2.0% [95% CI -11.1 to 15.0], &lt;i&gt;P&lt;/i&gt; = 0.77). ML presentation did not change the rates of recommending ACP nor PC referral (mean change 1.3% and 0.7%, respectively).LimitationsThe singular use case of prognosis in mNSCLC, low initial response rate.ConclusionsML-based assessments may improve prognostic accuracy but not result in changed decision making.ImplicationsML prognostic algorithms prioritizing explainability and absolute prognoses may have greater impact on clinician decision making.Trial Registration: CT.gov: NCT06463977HighlightsWhile machine learning (ML) algorithms may accurately predict mortality, the impact of prognostic ML on clinicians' prognostic accuracy and decision making and optimal presentation strategies for ML outputs are unclear.In this multicenter randomized survey study among vignettes of patients with advanced cancer, prognostic accuracy improved by 20.9% when clinicians reviewed vignettes with a hypothetical ML mortality risk prediction, with absolute risk presentation strategies resulting in greater accuracy gains than reference-dependent presentations alone.However, ML presentation did not change the rates of recommending advance care planning or palliative care referral (1.3% and 0.7%, respectiv","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"690-702"},"PeriodicalIF":3.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12233153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144561782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facilitators and Barriers of the Use of Prognostic Models for Clinical Decision Making in Acute Neurologic Care: A Systematic Review. 在急性神经系统护理中使用预后模型进行临床决策的促进因素和障碍:一项系统综述。
IF 3.1 3区 医学
Medical Decision Making Pub Date : 2025-08-01 Epub Date: 2025-06-29 DOI: 10.1177/0272989X251343027
Ellen X Y Hu, Evelien S van Hoorn, Isabel R A Retel Helmrich, Susanne Muehlschlegel, Judith A C Rietjens, Hester F Lingsma
{"title":"Facilitators and Barriers of the Use of Prognostic Models for Clinical Decision Making in Acute Neurologic Care: A Systematic Review.","authors":"Ellen X Y Hu, Evelien S van Hoorn, Isabel R A Retel Helmrich, Susanne Muehlschlegel, Judith A C Rietjens, Hester F Lingsma","doi":"10.1177/0272989X251343027","DOIUrl":"10.1177/0272989X251343027","url":null,"abstract":"<p><p>BackgroundPrognostic models are crucial for predicting patient outcomes and aiding clinical decision making. Despite their availability in acute neurologic care, their use in clinical practice is limited, with insufficient reflection on reasons for this scarce implementation.PurposeTo summarize facilitators and barriers among clinicians affecting the use of prognostic models in acute neurologic care.Data SourcesSystematic searches were conducted in Embase, Medline ALL, Web of Science Core Collection, and Cochrane Central Register of Controlled Trials from inception until February 2024.Study SelectionEligible studies included those providing clinicians' perspectives on the use of prognostic models in acute neurologic care.Data ExtractionData were extracted concerning study characteristics, study aim, data collection and analysis, prognostic models, participant characteristics, facilitators, and barriers. Risk of bias was assessed using the Qualsyst tool.Data SynthesisFindings were structured around the Unified Theory of Acceptance and Use of Technology framework. Identified facilitators included improved communication with patients and surrogate decision makers (<i>n</i> = 9), reassurance of clinical judgment (<i>n</i> = 6) perceived improved patient outcomes (<i>n</i> = 4), standardization of care (<i>n</i> = 4), resource optimization (<i>n</i> = 3), and extension of clinical knowledge (<i>n</i> = 3). Barriers included perceived misinterpretation during risk communication (<i>n</i> = 3), mistrust in data (<i>n</i> = 3), perceived reduction of clinicians' autonomy (<i>n</i> = 3), and ethical considerations (<i>n</i> = 2). In total, 15 studies were included, with all but 1 demonstrating good methodological quality. None were excluded due to poor quality ratings.LimitationsThis review identifies limitations, including study heterogeneity, exclusion of gray literature, and the scarcity of evaluations on model implementation.ConclusionsUnderstanding facilitators and barriers may enhance prognostic model development and implementation. Bridging the gap between development and clinical use requires improved collaboration among researchers, clinicians, patients, and surrogate decision makers.HighlightsThis is the first systematic review to summarize published facilitators and barriers affecting the use of prognostic models in acute neurologic care from the clinicians' perspective.Commonly reported barriers and facilitators were consistent with several domains of the Unified Theory of Acceptance and Use of Technology model, including effort expectancy, social influence, and facilitating conditions, with the focus on the performance expectancy domain.Future implementation research including collaboration with researchers from different fields, clinicians, patients, and their surrogate decision makers may be highly valuable for future model development and implementation.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"753-770"},"PeriodicalIF":3.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260205/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144530739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Postpartum Sterilization after a Preterm Delivery Is Not Associated with Decision Regret. 早产后的产后绝育与决策后悔无关。
IF 3.1 3区 医学
Medical Decision Making Pub Date : 2025-08-01 Epub Date: 2025-06-21 DOI: 10.1177/0272989X251341478
Marika Toscano, Sarah J Betstadt, Sara Spielman, Gayathri Guru Murthy, Brooke A Levandowski
{"title":"Postpartum Sterilization after a Preterm Delivery Is Not Associated with Decision Regret.","authors":"Marika Toscano, Sarah J Betstadt, Sara Spielman, Gayathri Guru Murthy, Brooke A Levandowski","doi":"10.1177/0272989X251341478","DOIUrl":"10.1177/0272989X251341478","url":null,"abstract":"<p><p>BackgroundAlthough sterilization is one of the most effective methods of birth control, some physicians may hesitate to perform postpartum sterilizations on patients after preterm birth, as preterm labor and delivery may preclude adequate counseling.MethodsThis is a cross-sectional study conducted at a single, tertiary care, academic institution of adult pregnant patients who experienced a spontaneous or iatrogenic preterm delivery between March 15, 2011, and May 10, 2014 and underwent postpartum female surgical sterilization within 12 wk of delivery. A validated Decision Regret Scale was administered 7 to 11 y later. Univariate and bivariate analyses were conducted. Unadjusted and multivariate logistic regression analyses identified factors associated with moderate to severe decision regret.ResultsMost participants (75.5%) with a preterm delivery reported no or mild regret associated with their sterilization. Circumstances surrounding the sterilization decision were positive, as 85.7% reported having enough information, 81.6% reported enough emotional support, and 75.5% reported adequate decision time. Adjusting for maternal and gestational age at delivery plus other covariates, only those reporting they had adequate time to make their sterilization decision remained significantly associated with no or mild regret (odds ratio: 0.002, 95% confidence interval: <0.001-0.61).DiscussionStudy results indicated high confidence in the sterilization decision, which was not affected by maternal age at delivery or the fact that the individual had a preterm delivery, emphasizing the importance of individualized counseling and support for patients during the decision-making process.ConclusionProviding adequate time for patients to decide on postpartum surgical sterilization was the most important factor for decreased sterilization regret.ImplicationsThe decision for sterilization should be made using a patient-centered, shared decision-making framework.HighlightsAmong patients with a preterm delivery who underwent postpartum surgical sterilization, maternal age at delivery was not associated with increased decision regret.Providing adequate time for patients to decide on postpartum surgical sterilization was the most important factor for decreased sterilization regret among patients with a preterm delivery.We must trust the patient knows they are making the right decision for themselves in that moment, even if this is at the time of a preterm delivery.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"654-664"},"PeriodicalIF":3.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144340575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Limited Sample Size and Follow-up on Partitioned Survival and Multistate Modeling-Based Health Economic Models: A Simulation Study. 有限样本量和随访对分区生存和基于多状态建模的健康经济模型的影响:模拟研究。
IF 3.1 3区 医学
Medical Decision Making Pub Date : 2025-08-01 Epub Date: 2025-06-25 DOI: 10.1177/0272989X251342596
Jaclyn M Beca, Kelvin K W Chan, David M J Naimark, Petros Pechlivanoglou
{"title":"Impact of Limited Sample Size and Follow-up on Partitioned Survival and Multistate Modeling-Based Health Economic Models: A Simulation Study.","authors":"Jaclyn M Beca, Kelvin K W Chan, David M J Naimark, Petros Pechlivanoglou","doi":"10.1177/0272989X251342596","DOIUrl":"10.1177/0272989X251342596","url":null,"abstract":"<p><p>BackgroundEconomic models often require extrapolation of clinical time-to-event data for multiple events. Two modeling approaches in oncology that incorporate time dependency include partitioned survival models (PSM) and semi-Markov decision models estimated using multistate modeling (MSM). The objective of this simulation study was to assess the performance of PSM and MSM across datasets with varying sample size and degrees of censoring.MethodsWe generated disease trajectories of progression and death for multiple hypothetical populations with advanced cancers. These populations served as the sampling pool for simulated trial cohorts with multiple sample sizes and various levels of follow-up. We estimated MSM and PSM by fitting survival models to these simulated datasets with different approaches to incorporating general population mortality (GPM) and selected best-fitting models using statistical criteria. Mean survival was compared with \"true\" population values to assess error.ResultsWith near complete follow-up, both PSMs and MSMs accurately estimated mean population survival, while smaller samples and shorter follow-up times were associated with a larger error across approaches and clinical scenarios, especially for more distant clinical endpoints. MSMs were slightly more often not estimable when informed by studies with small sample sizes or short follow-up, due to low numbers at risk for the downstream transition. However, when estimable, the MSM models more commonly produced a smaller error in mean survival than the PSMs did.ConclusionsCaution should be taken with all modeling approaches when the underlying data are very limited, particularly PSMs, due to the large errors produced. When estimable and for selections based on statistical criteria, MSMs performed similar to or better than PSMs in estimating mean survival with limited data.HighlightsCaution should be taken with all modeling approaches when underlying data are very limited.Partitioned survival models (PSMs) can lead to significant errors, particularly with limited follow-up. Incorporating general population mortality (GPM) via internal additive hazards improved estimates of mean survival, but the effects were modest.When estimable, decision models based on multistate modeling (MSM) produced similar or smaller error in mean survival compared with PSM, but small samples or limited deaths after progression produce additional challenges for fitting MSMs; more research is needed to improve estimation of MSMs and similar state transition-based modeling methods with limited data.Future studies are needed to assess the applicability of these findings to comparative analyses estimating incremental survival benefits.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"714-725"},"PeriodicalIF":3.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144499005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping and Linking between the EQ-5D-5L and the PROMIS Domains in the United States. 美国EQ-5D-5L与PROMIS结构域的映射与连接。
IF 3.1 3区 医学
Medical Decision Making Pub Date : 2025-08-01 Epub Date: 2025-06-13 DOI: 10.1177/0272989X251340990
Xiaodan Tang, Ron D Hays, David Cella, Sarah Acaster, Benjamin David Schalet, Asia Sikora Kessler, Montserrat Vera Llonch, Janel Hanmer
{"title":"Mapping and Linking between the EQ-5D-5L and the PROMIS Domains in the United States.","authors":"Xiaodan Tang, Ron D Hays, David Cella, Sarah Acaster, Benjamin David Schalet, Asia Sikora Kessler, Montserrat Vera Llonch, Janel Hanmer","doi":"10.1177/0272989X251340990","DOIUrl":"10.1177/0272989X251340990","url":null,"abstract":"<p><p>ObjectivesThe EQ-5D-5L and Patient-Reported Outcomes Measurement Information System (PROMIS®) preference score (PROPr) are preference-based measures. This study compares mapping and linking approaches to align the PROPr and the PROMIS domains included in PROPr plus Anxiety with EQ-5D-5L item responses and preference scores.MethodsA general population sample of 983 adults completed the online survey. Regression-based mapping methods and item response theory (IRT) linking methods were used to align scores. Mapping was used to predict EQ-5D-5L item responses or preference scores using PROMIS domain scores. Equating strategies were applied to address regression to the mean. The linking approach estimated item parameters of EQ-5D-5L based on the PROMIS score metric and generated bidirectional crosswalks between EQ-5D-5L item responses and relevant PROMIS domain scores.ResultsEQ-5D-5L item responses were significantly accounted for by PROMIS domains of Anxiety, Depression, Fatigue, Pain Interference, Physical Function, Social Roles, and Sleep Disturbance. EQ-5D-5L preference scores were accounted for by the same PROMIS domains, excluding Anxiety and Fatigue, and by the PROPr preference scores. IRT-linking crosswalks were generated between EQ-5D-5L item responses and PROMIS domains of Physical Function, Pain, and Depression. Small differences were found between observed and predicted scores for all 3 methods. The direct mapping approach (directly predicting EQ-5D-5L scores) with the equipercentile equating strategy proved superior to the linking method due to improved prediction accuracy and comparable score range coverage.ConclusionsThe PROPr and the PROMIS domains included in the PROMIS-29+2 predict EQ-5D-5L preference scores or item responses. Both methods can generate acceptably precise EQ-5D-5L preference scores, with the direct mapping approach using the equating strategy offering better precision. We summarized recommended score conversion tables based on available and desired scores.HighlightsThis study compares mapping (score prediction) and IRT-based linking approaches to align the PROPr and the PROMIS domains with EQ-5D-5L item responses and preference scores.Researchers, clinicians, and stakeholders can use this study's regression formulas and score crosswalks to convert scores between PROMIS and EQ-5D-5L.Mapping can generate more precise scores, while linking offers greater flexibility in score estimation when fewer PROMIS domain scores are collected.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"740-752"},"PeriodicalIF":3.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144286947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing Potential Contributors of Health-Related Quality of Life and Mortality Among US Older Adults. 比较美国老年人健康相关生活质量和死亡率的潜在影响因素。
IF 3.1 3区 医学
Medical Decision Making Pub Date : 2025-08-01 Epub Date: 2025-06-12 DOI: 10.1177/0272989X251340709
Haomiao Jia, Erica I Lubetkin
{"title":"Comparing Potential Contributors of Health-Related Quality of Life and Mortality Among US Older Adults.","authors":"Haomiao Jia, Erica I Lubetkin","doi":"10.1177/0272989X251340709","DOIUrl":"10.1177/0272989X251340709","url":null,"abstract":"<p><p>BackgroundMany contributing factors can influence individuals' health, and these factors may not affect health outcomes equally. This study compared the importance of 38 predictors of health-related quality of life (HRQOL) and 2-y mortality for US older adults.MethodsData were from the Medicare Health Outcome Survey Cohort 23 (baseline 2020, follow-up 2022). This study included participants ≥65 y (<i>N</i> = 142,551). HRQOL measures included physically unhealthy days (PUD), mentally unhealthy days (MUD), and activity limitation days (ALD) from the Healthy Days questions and 3 measures from the Veterans RAND 12-Item Health Survey (VR-12). A variable's importance was measured as the average gain in <i>R</i><sup>2</sup> after adding the variable in all submodels.ResultsFor physical health (PUD), pain interfered with daily activities was the most important predictor with an importance score (I) of 8.4, indicating that this variable contributed 8.4% variance of PUD. Other leading predictors included pain interfered with socializing (I = 7.3) and pain rating (I = 6.7). For mental health (MUD), depression (I = 11.6) was far more important than any of the other predictors, contributing 38% of the total importance. For perceived disability (ALD), pain interfered with socializing was the most important predictor (I = 8.3), followed by difficulty doing errands (I = 6.1) and pain interfered with activities (I = 6.0). Of note, this general pattern was consistent for VR-12 HRQOL measures. Variables' importance scores for 2-y morality were very different from that for HRQOL. Age (I = 2.8) and difficulty doing errands (I = 2.6) were the most important variables.ConclusionsThis study demonstrated a large discrepancy in the variables' importance for HRQOL and 2-y mortality. Functional limitations/disabilities and geriatric syndromes were more important for the prediction of HRQOL than were chronic conditions and other factors combined.HighlightsFor older adults, large differences were found in variable importance for explaining health-related quality of life (HRQOL) and 2-y mortality among 38 explanatory variables, including functional limitations, geriatric syndromes, chronic conditions, and other factors.Pain and pain interference, difficulty doing errands, difficulty concentrating, memory problems, problems with walking/balance, and depression were the most important predictors of HRQOL.Age, marital status, education, difficulty doing errands, congestive heart failure, chronic obstructive pulmonary disease, and any cancer were more important for 2-y mortality than HRQOL.Health care providers and policy makers should focus on the impact of multimorbidity and the interaction between often multifactorial conditions, as opposed to focusing only on individual diseases.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"675-689"},"PeriodicalIF":3.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144276465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relative Survival Modeling for Appraising the Cost-Effectiveness of Life-Extending Treatments: An Application to Tafamidis for the Treatment of Transthyretin Amyloidosis with Cardiomyopathy. 评价延长生命治疗成本-效果的相对生存模型:他法非地治疗转甲状腺素淀粉样变合并心肌病的应用。
IF 3.1 3区 医学
Medical Decision Making Pub Date : 2025-08-01 Epub Date: 2025-06-17 DOI: 10.1177/0272989X251342459
Robert Young, Jack Said, Sam Large
{"title":"Relative Survival Modeling for Appraising the Cost-Effectiveness of Life-Extending Treatments: An Application to Tafamidis for the Treatment of Transthyretin Amyloidosis with Cardiomyopathy.","authors":"Robert Young, Jack Said, Sam Large","doi":"10.1177/0272989X251342459","DOIUrl":"10.1177/0272989X251342459","url":null,"abstract":"<p><p>BackgroundEconomic evaluations for life-extending treatments frequently require clinical trial data to be extrapolated beyond the trial duration to estimate changes in life expectancy. Conventional survival models often display hazard profiles that do not rise as expected in an aging population and require the incorporation of external data to ensure plausibility. Relative survival (RS) models can enable the incorporation of external data at model fitting. A comparison was performed between RS and \"standard\" all-cause survival (ACS) in modeling outcomes from the tafamidis for the treatment of transthyretin amyloid cardiomyopathy (ATTR-ACT) trial.MethodsPatient-level data from the 30-mo ATTR-ACT trial were used to develop survival models based on parametric ACS and RS models. The latter was composed of an expected hazard and an independent excess hazard. Models were selected according to statistical goodness of fit and clinical plausibility, with extrapolation up to 72 mo validated against ATTR-ACT long-term extension (LTE) data.ResultsInformation criteria were too similar to discriminate between RS or ACS models. Several ACS models were affected by capping with general population mortality rates and considered implausible. Selected RS models matched the empirical hazard function, could not fall below general population hazards, and predicted well compared with the LTE data. The preferred RS model predicted the restricted mean survival (RMST) to 72 mo of 51.0 mo (95% confidence interval [CI]: 46.1, 55.3); this compared favorably to the LTE RMST of 50.9 mo (95% CI: 47.7, 53.9).DiscussionRS models can improve the accuracy for modeling populations with high background mortality rates (e.g., the ATTR-CM trial). RS modeling enforces a plausible long-term hazard profile, enables flexibility in medium-term hazard profiles, and increases the robustness of medical decision making.HighlightsTo inform survival extrapolations for health technology assessment, a relative survival model incorporating external data per the recommendations of the National Institute for Health and Care Excellence (NICE) Decision Support Unit was used in support of the NICE evaluation of tafamidis for treatment of transthyretin amyloid cardiomyopathy (ATTR-CM).Relative survival modeling allowed selection of a broader range of hazard profiles compared with all-cause survival modeling by ensuring plausible long-term predictions.Predictions from plausible relative survival models of overall survival in patients with ATTR-CM, extrapolated from the ATTR-ACT trial, validated very well to outcomes after a doubling of follow-up and demonstrated improved precision and accuracy versus parametric all-cause survival models.</p>","PeriodicalId":49839,"journal":{"name":"Medical Decision Making","volume":" ","pages":"726-739"},"PeriodicalIF":3.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12304488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144318529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信