{"title":"Modelling of a 12-DoF Parachute–Riser–Payload system dynamics using Kane’s method","authors":"Prashant G. Iyer","doi":"10.1007/s11044-023-09939-z","DOIUrl":"https://doi.org/10.1007/s11044-023-09939-z","url":null,"abstract":"","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A consensus-based alternating direction method of multipliers approach to parallelize large-scale minimum-lap-time problems","authors":"L. Bartali, E. Grabovic, M. Gabiccini","doi":"10.1007/s11044-023-09932-6","DOIUrl":"https://doi.org/10.1007/s11044-023-09932-6","url":null,"abstract":"Abstract Minimum-lap-time planning (MLTP) problems, which entail finding optimal trajectories for race cars on racetracks, have received significant attention in the recent literature. They are commonly addressed as optimal control problems (OCPs) and are numerically discretized using direct collocation methods. Subsequently, they are solved as nonlinear programs (NLPs). The conventional approach to solving MLTP problems is serial , whereby the resulting NLP is solved all at once. However, for problems characterized by a large number of variables, distributed optimization algorithms, such as the alternating direction method of multipliers (ADMM), may represent a viable option, especially when multicore CPU architectures are available. This study presents a consensus-based ADMM approach tailored to solving MLTP problems through a distributed optimization algorithm. The algorithm partitions the problem into smaller subproblems based on different sectors of a track, distributing them among multiple processors. ADMM is then used to ensure consensus among the distributed computational processes. In particular, here the term “consensus” denotes the requirement for each subproblem to achieve mutual agreement across the junction areas. The paper also outlines specific strategies leveraging domain knowledge to improve the convergence of the distributed algorithm. The ADMM approach is validated against the serial approach, and numerical results are presented for both single-lap and multilap scenarios. In both cases, the ADMM approach proves superior for problem dimensions of 70k+ variables compared to serial methods. In planning scenarios with complex vehicle models on long track horizons, i.e., for problems with 1M+ variables, the efficiency gain of the ADMM approach is substantial, and it becomes the only viable option to maintain computational times within acceptable limits.","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cushioning performance analysis of multilayered rubber materials with nonuniform friction coefficients of corrugated contact surface under the bipotential framework","authors":"Ling Tao, Zhiqiang Feng","doi":"10.1007/s11044-023-09931-7","DOIUrl":"https://doi.org/10.1007/s11044-023-09931-7","url":null,"abstract":"","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135438204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kun Li, Zuqing Yu, Peng Lan, Qinglong Tian, Nianli Lu
{"title":"ALE-ANCF circular cross-section beam element and its application on the dynamic analysis of cable-driven mechanism","authors":"Kun Li, Zuqing Yu, Peng Lan, Qinglong Tian, Nianli Lu","doi":"10.1007/s11044-023-09929-1","DOIUrl":"https://doi.org/10.1007/s11044-023-09929-1","url":null,"abstract":"","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135741600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierangelo Masarati, M Jihad Ummul Quro, Andrea Zanoni
{"title":"Projection continuation for minimal coordinate set formulation and singularity detection of redundantly constrained system dynamics","authors":"Pierangelo Masarati, M Jihad Ummul Quro, Andrea Zanoni","doi":"10.1007/s11044-023-09930-8","DOIUrl":"https://doi.org/10.1007/s11044-023-09930-8","url":null,"abstract":"Abstract The formulation of (possibly redundantly) constrained system dynamics using coordinate projection onto a subspace locally tangent to the constraint manifold is revisited using the QR factorization of the constraint Jacobian matrix, using column pivoting to identify a suitable subspace, possibly detect any singular configurations that may arise, and extract it. The evolution of the QR factorization is integrated along with that of the constraint Jacobian matrix as the solution evolves, generalizing to redundant constraints a recently proposed true continuation algorithm that tracks the evolution of the subspace of independent coordinates. The resulting subspace does not visibly affect the quality of the solution, as it is merely a recombination of that resulting from the blind application of the QR factorization but avoids the artificial algorithmic irregularities or discontinuities in the generalized velocities that could otherwise result from arbitrary reparameterizations of the coordinate set, and identifies and discriminates any further possible motions that arise at singular configurations. The characteristics of the proposed subspace evolution approach are exemplified by solving simple problems with incremental levels of redundancy and singularity orders.","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135825554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Álvaro López Varela, Daniel Dopico Dopico, Alberto Luaces Fernández
{"title":"Augmented Lagrangian index-3 semi-recursive formulations with projections","authors":"Álvaro López Varela, Daniel Dopico Dopico, Alberto Luaces Fernández","doi":"10.1007/s11044-023-09928-2","DOIUrl":"https://doi.org/10.1007/s11044-023-09928-2","url":null,"abstract":"Abstract Sensitivity analysis represents a powerful tool for the optimization of multibody system dynamics. The performance of a gradient-based optimization algorithm is strongly tied to the dynamic and the sensitivity formulations considered. The accuracy and efficiency are critical to any optimization problem, thus they are key factors in the selection of the dynamic and sensitivity analysis approaches used to compute an objective function gradient. Semi-recursive methods usually outperform global methods in terms of computational time, even though they involve sometimes demanding recursive procedures. Semi-recursive methods are well suited to be combined with different constraints enforcement schemes as the augmented Lagrangian index-3 formulation with velocity and acceleration projections (ALI3-P), taking advantage of the robustness, accurate fulfillment of constraint equations and the low computational burden. The sensitivity analysis of the semi-recursive ALI3-P formulation is studied in this document by means of the direct differentiation method. As a result, a semi-recursive ALI3-P sensitivity formulation is developed for an arbitrary reference point selection, and then two particular versions are unfolded and implemented in the general purpose multibody library MBSLIM, using as reference point the center of mass (RTdyn0) or the global origin of coordinates (RTdyn1). Besides, the detailed derivatives of the recursive terms are provided, which will be useful not only for the direct sensitivity formulation presented herein, but also for other sensitivity formulations relying on the same recursive expressions. The implementation has been tested in two numerical experiments, a five-bar benchmark problem and a buggy vehicle.","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135420527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preface for the MUBO Special Issue on its 25th Anniversary","authors":"J. Ambrósio, A. Mikkola","doi":"10.1007/s11044-023-09927-3","DOIUrl":"https://doi.org/10.1007/s11044-023-09927-3","url":null,"abstract":"","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47991737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rigid–flexible–thermal coupling dynamics of a hub and multiplate system considering frictional contact","authors":"Tingting Yuan, Bo Lei, Jinyang Liu, Yunli Wu","doi":"10.1007/s11044-023-09925-5","DOIUrl":"https://doi.org/10.1007/s11044-023-09925-5","url":null,"abstract":"","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47734609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Andary, Christine Heinzel, Stefan Wischmann, J. Berroth, G. Jacobs
{"title":"Calculation of tooth pair stiffness by finite element analysis for the multibody simulation of flexible gear pairs with helical teeth and flank modifications","authors":"F. Andary, Christine Heinzel, Stefan Wischmann, J. Berroth, G. Jacobs","doi":"10.1007/s11044-023-09926-4","DOIUrl":"https://doi.org/10.1007/s11044-023-09926-4","url":null,"abstract":"","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41747416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Autonomous unicycle: modeling, dynamics, and control","authors":"Xincheng Cao, Dang Cong Bui, D. Takács, G. Orosz","doi":"10.1007/s11044-023-09923-7","DOIUrl":"https://doi.org/10.1007/s11044-023-09923-7","url":null,"abstract":"","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46668871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}