{"title":"Monocular enucleation alters retinal waves in the surviving eye.","authors":"Samuel Wilson Failor, Arash Ng, Hwai-Jong Cheng","doi":"10.1186/s13064-018-0101-1","DOIUrl":"https://doi.org/10.1186/s13064-018-0101-1","url":null,"abstract":"<p><strong>Background: </strong>Activity in neurons drives afferent competition that is critical for the refinement of nascent neural circuits. In ferrets, when an eye is lost in early development, surviving retinogeniculate afferents from the spared eye spread across the thalamus in a manner that is dependent on spontaneous retinal activity. However, how this spontaneous activity, also known as retinal waves, might dynamically regulate afferent terminal targeting remains unknown.</p><p><strong>Methods: </strong>We recorded retinal waves from retinae ex vivo using multi-electrode arrays. Retinae came from ferrets who were binocular or who had one eye surgically removed at birth. Linear mixed effects models were used to investigate the effects of early monocular enucleation on retinal wave activity.</p><p><strong>Results: </strong>When an eye is removed at birth, spontaneous bursts of action potentials by retinal ganglion cells (RGCs) in the surviving eye are shorter in duration. The shortening of RGC burst duration results in decreased pairwise RGC correlations across the retina and is associated with the retinal wave-dependent spread of retinogeniculate afferents previously reported in enucleates.</p><p><strong>Conclusion: </strong>Our findings show that removal of the competing eye modulates retinal waves and could underlie the dynamic regulation of competition-based refinement during retinogeniculate development.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":"13 1","pages":"4"},"PeriodicalIF":3.6,"publicationDate":"2018-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-018-0101-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35943183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marie-Amélie Farreny, Eric Agius, Sophie Bel-Vialar, Nathalie Escalas, Nagham Khouri-Farah, Chadi Soukkarieh, Cathy Danesin, Fabienne Pituello, Philippe Cochard, Cathy Soula
{"title":"FGF signaling controls Shh-dependent oligodendroglial fate specification in the ventral spinal cord.","authors":"Marie-Amélie Farreny, Eric Agius, Sophie Bel-Vialar, Nathalie Escalas, Nagham Khouri-Farah, Chadi Soukkarieh, Cathy Danesin, Fabienne Pituello, Philippe Cochard, Cathy Soula","doi":"10.1186/s13064-018-0100-2","DOIUrl":"10.1186/s13064-018-0100-2","url":null,"abstract":"<p><strong>Background: </strong>Most oligodendrocytes of the spinal cord originate from ventral progenitor cells of the pMN domain, characterized by expression of the transcription factor Olig2. A minority of oligodendrocytes is also recognized to emerge from dorsal progenitors during fetal development. The prevailing view is that generation of ventral oligodendrocytes depends on Sonic hedgehog (Shh) while dorsal oligodendrocytes develop under the influence of Fibroblast Growth Factors (FGFs).</p><p><strong>Results: </strong>Using the well-established model of the chicken embryo, we show that ventral spinal progenitor cells activate FGF signaling at the onset of oligodendrocyte precursor cell (OPC) generation. Inhibition of FGF receptors at that time appears sufficient to prevent generation of ventral OPCs, highlighting that, in addition to Shh, FGF signaling is required also for generation of ventral OPCs. We further reveal an unsuspected interplay between Shh and FGF signaling by showing that FGFs serve dual essential functions in ventral OPC specification. FGFs are responsible for timely induction of a secondary Shh signaling center, the lateral floor plate, a crucial step to create the burst of Shh required for OPC specification. At the same time, FGFs prevent down-regulation of Olig2 in pMN progenitor cells as these cells receive higher threshold of the Shh signal. Finally, we bring arguments favoring a key role of newly differentiated neurons acting as providers of the FGF signal required to trigger OPC generation in the ventral spinal cord.</p><p><strong>Conclusion: </strong>Altogether our data reveal that the FGF signaling pathway is activated and required for OPC commitment in the ventral spinal cord. More generally, our data may prove important in defining strategies to produce large populations of determined oligodendrocyte precursor cells from undetermined neural progenitors, including stem cells. In the long run, these new data could be useful in attempts to stimulate the oligodendrocyte fate in residing neural stem cells.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":"13 1","pages":"3"},"PeriodicalIF":3.6,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5842613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35897480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diana Vidovic, Raul Ayala Davila, Richard M Gronostajski, Tracey J Harvey, Michael Piper
{"title":"Transcriptional regulation of ependymal cell maturation within the postnatal brain.","authors":"Diana Vidovic, Raul Ayala Davila, Richard M Gronostajski, Tracey J Harvey, Michael Piper","doi":"10.1186/s13064-018-0099-4","DOIUrl":"https://doi.org/10.1186/s13064-018-0099-4","url":null,"abstract":"<p><strong>Background: </strong>Radial glial stem cells within the developing nervous system generate a variety of post-mitotic cells, including neurons and glial cells, as well as the specialised multi-ciliated cells that line the walls of the ventricular system, the ependymal cells. Ependymal cells separate the brain parenchyma from the cerebrospinal fluid and mediate osmotic regulation, the flow of cerebrospinal fluid, and the subsequent dispersion of signalling molecules via the co-ordinated beating of their cilia. Deficits to ependymal cell development and function have been implicated in the formation of hydrocephalus, but the transcriptional mechanisms underpinning ependymal development remain poorly characterised.</p><p><strong>Findings: </strong>Here, we demonstrate that the transcription factor nuclear factor IX (NFIX) plays a central role in the development of the ependymal cell layer of the lateral ventricles. Expression of ependymal cell-specific markers is delayed in the absence of Nfix. Moreover, Nfix-deficient mice exhibit aberrant ependymal cell morphology at postnatal day 15, culminating in abnormal thickening and intermittent loss of this cell layer. Finally, we reveal Foxj1, a key factor promoting ependymal cell maturation, as a target for NFIX-mediated transcriptional activation.</p><p><strong>Conclusions: </strong>Collectively, our data indicate that ependymal cell development is reliant, at least in part, on NFIX expression, further implicating this transcription factor as a mediator of multiple aspects of radial glial biology during corticogenesis.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":"13 1","pages":"2"},"PeriodicalIF":3.6,"publicationDate":"2018-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-018-0099-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35838871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Olivier Clément, Isabel Anne Hemming, Ivan Enghian Gladwyn-Ng, Zhengdong Qu, Shan Shan Li, Michael Piper, Julian Ik-Tsen Heng
{"title":"Correction to: Rp58 and p27<sup>kip1</sup> coordinate cell cycle exit and neuronal migration within the embryonic mouse cerebral cortex.","authors":"Olivier Clément, Isabel Anne Hemming, Ivan Enghian Gladwyn-Ng, Zhengdong Qu, Shan Shan Li, Michael Piper, Julian Ik-Tsen Heng","doi":"10.1186/s13064-017-0098-x","DOIUrl":"https://doi.org/10.1186/s13064-017-0098-x","url":null,"abstract":"<p><strong>Correction: </strong>After publication of the original article [1] it was realised that there were errors in figures 2a,b,f,g, which arose as a result of preparing figures from data collected and analysed at the same time as the work reported in [2] (Supplementary Figure 1 of [2]). An updated Fig. 2 is included with this Correction.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":"13 1","pages":"1"},"PeriodicalIF":3.6,"publicationDate":"2018-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-017-0098-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35728612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mikiko Nagashima, Jeremy Hadidjojo, Linda K Barthel, David K Lubensky, Pamela A Raymond
{"title":"Anisotropic Müller glial scaffolding supports a multiplex lattice mosaic of photoreceptors in zebrafish retina.","authors":"Mikiko Nagashima, Jeremy Hadidjojo, Linda K Barthel, David K Lubensky, Pamela A Raymond","doi":"10.1186/s13064-017-0096-z","DOIUrl":"https://doi.org/10.1186/s13064-017-0096-z","url":null,"abstract":"<p><strong>Background: </strong>The multiplex, lattice mosaic of cone photoreceptors in the adult fish retina is a compelling example of a highly ordered epithelial cell pattern, with single cell width rows and columns of cones and precisely defined neighbor relationships among different cone types. Cellular mechanisms patterning this multiplex mosaic are not understood. Physical models can provide new insights into fundamental mechanisms of biological patterning. In earlier work, we developed a mathematical model of photoreceptor cell packing in the zebrafish retina, which predicted that anisotropic mechanical tension in the retinal epithelium orients planar polarized adhesive interfaces to align the columns as cone photoreceptors are generated at the retinal margin during post-embryonic growth.</p><p><strong>Methods: </strong>With cell-specific fluorescent reporters and in vivo imaging of the growing retinal margin in transparent juvenile zebrafish we provide the first view of how cell packing, spatial arrangement, and cell identity are coordinated to build the lattice mosaic. With targeted laser ablation we probed the tissue mechanics of the retinal epithelium.</p><p><strong>Results: </strong>Within the lattice mosaic, planar polarized Crumbs adhesion proteins pack cones into a single cell width column; between columns, N-cadherin-mediated adherens junctions stabilize Müller glial apical processes. The concentration of activated pMyosin II at these punctate adherens junctions suggests that these glial bands are under tension, forming a physical barrier between cone columns and contributing to mechanical stress anisotropies in the epithelial sheet. Unexpectedly, we discovered that the appearance of such parallel bands of Müller glial apical processes precedes the packing of cones into single cell width columns, hinting at a possible role for glia in the initial organization of the lattice mosaic. Targeted laser ablation of Müller glia directly demonstrates that these glial processes support anisotropic mechanical tension in the planar dimension of the retinal epithelium.</p><p><strong>Conclusions: </strong>These findings uncovered a novel structural feature of Müller glia associated with alignment of photoreceptors into a lattice mosaic in the zebrafish retina. This is the first demonstration, to our knowledge, of planar, anisotropic mechanical forces mediated by glial cells.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":" ","pages":"20"},"PeriodicalIF":3.6,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-017-0096-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35252507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geeta Godbole, Achira Roy, Ashwin S Shetty, Shubha Tole
{"title":"Novel functions of LHX2 and PAX6 in the developing telencephalon revealed upon combined loss of both genes.","authors":"Geeta Godbole, Achira Roy, Ashwin S Shetty, Shubha Tole","doi":"10.1186/s13064-017-0097-y","DOIUrl":"10.1186/s13064-017-0097-y","url":null,"abstract":"<p><p>Patterning of the telencephalic neuroepithelium is a tightly regulated process controlled by transcription factors and signalling molecules. The cortical primordium is flanked by two signalling centres, the hem medially, and the antihem laterally. The hem induces the formation of the hippocampus in adjacent neuroepithelium. Therefore, the position of the hem defines the position of the hippocampus in the brain. The antihem is positioned at the boundary between the dorsal and ventral telencephalon and proposed to provide patterning cues during development. LIM-homeodomain (LIM-HD) transcription factor LHX2 suppresses both hem and antihem fate in the cortical neuroepithelium. Upon loss of Lhx2, medial cortical neuroepithelium is transformed into hem, whereas lateral cortical neuroepithelium is transformed into antihem. Here, we show that transcription factor PAX6, known to regulate patterning of the lateral telencephalon, restricts this tissue from transforming into hem upon loss of Lhx2. When Lhx2 and Pax6 are both deleted, the cortical hem expands to occupy almost the complete extent of the cortical primordium, indicating that both factors act to suppress hem fate in the lateral telencephalon. Furthermore, the shift in the pallial-subpallial boundary and absence of the antihem, observed in the Pax6 mutant, are both restored in the Lhx2; Pax6 double mutant. Together, these results not only reveal a novel function for LHX2 in regulating dorsoventral patterning in the telencephalon, but also identify PAX6 as a fundamental regulator of where the hem can form, and therefore implicate this molecule as a determinant of hippocampal positioning.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":" ","pages":"19"},"PeriodicalIF":4.0,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35614368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Shao, Vanisha Lakhina, Puneet Dang, Ryan P Cheng, Christina L Marcaccio, Jonathan A Raper
{"title":"Olfactory sensory axons target specific protoglomeruli in the olfactory bulb of zebrafish.","authors":"Xin Shao, Vanisha Lakhina, Puneet Dang, Ryan P Cheng, Christina L Marcaccio, Jonathan A Raper","doi":"10.1186/s13064-017-0095-0","DOIUrl":"https://doi.org/10.1186/s13064-017-0095-0","url":null,"abstract":"<p><strong>Background: </strong>The axons of Olfactory Sensory Neurons (OSNs) project to reproducible target locations within the Olfactory Bulb (OB), converting odorant experience into a spatial map of neural activity. We characterized the initial targeting of OSN axons in the zebrafish, a model system suitable for studying axonal targeting early in development. In this system the initial targets of OSN axons are a small number of distinct, individually identifiable neuropilar regions called protoglomeruli. Previously, Olfactory Marker Protein-expressing and TRPC2-expressing classes of OSNs were shown to project to specific, non-overlapping sets of protoglomeruli, indicating that particular subsets of OSNs project to specific protoglomerular targets. We set out to map the relationship between the classical Odorant Receptor (OR) an OSN chooses to express and the protoglomerulus its axon targets.</p><p><strong>Methods: </strong>A panel of BACs were recombineered so that the axons of OSNs choosing to express modified ORs were fluorescently labeled. Axon projections were followed into the olfactory bulb to determine the protoglomeruli in which they terminated.</p><p><strong>Results: </strong>RNA-seq demonstrates that OSNs express a surprisingly wide variety of ORs and Trace Amine Associated Receptors (TAARs) very early when sensory axons are arriving in the bulb. Only a single OR is expressed in any given OSN even at these early developmental times. We used a BAC expression technique to map the trajectories of OSNs expressing specific odorant receptors. ORs can be divided into three clades based upon their sequence similarities. OSNs expressing ORs from two of these clades project to the CZ protoglomerulus, while OSNs expressing ORs from the third clade project to the DZ protoglomerulus. In contrast, OSNs expressing a particular TAAR project to multiple protoglomeruli. Neither OR choice nor axonal targeting are related to the position an OSN occupies within the olfactory pit.</p><p><strong>Conclusions: </strong>Our results demonstrate that it is not the choice of a particular OR, but of one from a category of ORs, that is related to initial OSN target location within the olfactory bulb. These choices are not related to OSN position within the olfactory epithelium.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":" ","pages":"18"},"PeriodicalIF":3.6,"publicationDate":"2017-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-017-0095-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35502650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cell type-specific effects of p27<sup>KIP1</sup> loss on retinal development.","authors":"Mariko Ogawa, Fuminori Saitoh, Norihiro Sudou, Fumi Sato, Hiroki Fujieda","doi":"10.1186/s13064-017-0094-1","DOIUrl":"https://doi.org/10.1186/s13064-017-0094-1","url":null,"abstract":"<p><strong>Background: </strong>Cyclin-dependent kinase (CDK) inhibitors play an important role in regulating cell cycle progression, cell cycle exit and cell differentiation. p27<sup>KIP1</sup> (p27), one of the major CDK inhibitors in the retina, has been shown to control the timing of cell cycle exit of retinal progenitors. However, the precise role of this protein in retinal development remains largely unexplored. We thus analyzed p27-deficient mice to characterize the effects of p27 loss on proliferation, differentiation, and survival of retinal cells.</p><p><strong>Methods: </strong>Expression of p27 in the developing and mature mouse retina was analyzed by immunohistochemistry using antibodies against p27 and cell type-specific markers. Cell proliferation and differentiation were examined in the wild-type and p27-deficient retinas by immunohistochemistry using various cell cycle and differentiation markers.</p><p><strong>Results: </strong>All postmitotic retinal cell types expressed p27 in the mouse retinas. p27 loss caused extension of the period of proliferation in the developing retinas. This extra proliferation was mainly due to ectopic cell cycle reentry of differentiating cells including bipolar cells, Müller glial cells and cones, rather than persistent division of progenitors as previously suggested. Aberrant cell cycle activity of cones was followed by cone death resulting in a significant reduction in cone number in the mature p27-deficient retinas.</p><p><strong>Conclusions: </strong>Although expressed in all retinal cell types, p27 is required to maintain the quiescence of specific cell types including bipolar cells, Müller glia, and cones while it is dispensable for preventing cell cycle reentry in other cell types.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":" ","pages":"17"},"PeriodicalIF":3.6,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-017-0094-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35424119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina.","authors":"Nathalie Bessodes, Karine Parain, Odile Bronchain, Eric J Bellefroid, Muriel Perron","doi":"10.1186/s13064-017-0093-2","DOIUrl":"https://doi.org/10.1186/s13064-017-0093-2","url":null,"abstract":"<p><strong>Background: </strong>Amacrine interneurons that modulate synaptic plasticity between bipolar and ganglion cells constitute the most diverse cell type in the retina. Most are inhibitory neurons using either GABA or glycine as neurotransmitters. Although several transcription factors involved in amacrine cell fate determination have been identified, mechanisms underlying amacrine cell subtype specification remain to be further understood. The Prdm13 histone methyltransferase encoding gene is a target of the transcription factor Ptf1a, an essential regulator of inhibitory neuron cell fate in the retina. Here, we have deepened our knowledge on its interaction with Ptf1a and investigated its role in amacrine cell subtype determination in the developing Xenopus retina.</p><p><strong>Methods: </strong>We performed prdm13 gain and loss of function in Xenopus and assessed the impact on retinal cell fate determination using RT-qPCR, in situ hybridization and immunohistochemistry.</p><p><strong>Results: </strong>We found that prdm13 in the amphibian Xenopus is expressed in few retinal progenitors and in about 40% of mature amacrine cells, predominantly in glycinergic ones. Clonal analysis in the retina reveals that prdm13 overexpression favours amacrine cell fate determination, with a bias towards glycinergic cells. Conversely, knockdown of prdm13 specifically inhibits glycinergic amacrine cell genesis. We also showed that, as in the neural tube, prdm13 is subjected to a negative autoregulation in the retina. Our data suggest that this is likely due to its ability to repress the expression of its inducer, ptf1a.</p><p><strong>Conclusions: </strong>Our results demonstrate that Prdm13, downstream of Ptf1a, acts as an important regulator of glycinergic amacrine subtype specification in the Xenopus retina. We also reveal that Prdm13 regulates ptf1a expression through a negative feedback loop.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":" ","pages":"16"},"PeriodicalIF":3.6,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-017-0093-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35466512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two Drosophila model neurons can regenerate axons from the stump or from a converted dendrite, with feedback between the two sites.","authors":"Kavitha S Rao, Melissa M Rolls","doi":"10.1186/s13064-017-0092-3","DOIUrl":"https://doi.org/10.1186/s13064-017-0092-3","url":null,"abstract":"<p><strong>Background: </strong>After axon severing, neurons recover function by reinitiating axon outgrowth. New outgrowth often originates from the remaining axon stump. However, in many mammalian neurons, new axons initiate from a dendritic site when the axon is injured close to the cell body.</p><p><strong>Methods: </strong>Drosophila sensory neurons are ideal for studying neuronal injury responses because they can be injured reproducibly in a variety of genetic backgrounds. In Drosophila, it has been shown that a complex sensory neuron, ddaC, can regenerate an axon from a stump, and a simple sensory neuron, ddaE, can regenerate an axon from a dendrite. To provide a more complete picture of axon regeneration in these cell types, we performed additional injury types.</p><p><strong>Results: </strong>We found that ddaE neurons can initiate regeneration from an axon stump when a stump remains. We also showed that ddaC neurons regenerate from the dendrite when the axon is severed close to the cell body. We next demonstrated if a stump remains, new axons can originate from this site and a dendrite at the same time. Because cutting the axon close to the cell body results in growth of the new axon from a dendrite, and cutting further out may not, we asked whether the initial response in the cell body was similar after both types of injury. A transcriptional reporter for axon injury signaling, puc-GFP, increased with similar timing and levels after proximal and distal axotomy. However, changes in dendritic microtubule polarity differed in response to the two types of injury, and were influenced by the presence of a scar at the distal axotomy site.</p><p><strong>Conclusions: </strong>We conclude that both ddaE and ddaC can regenerate axons either from the stump or a dendrite, and that there is some feedback between the two sites that modulates dendritic microtubule polarity.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":" ","pages":"15"},"PeriodicalIF":3.6,"publicationDate":"2017-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-017-0092-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35278975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}